5 resultados para management control systems
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Environmental Control Systems (ECS), enable people with high cervical Spinal Cord Injury (high SCI) to control and access everyday electronic devices. In Ireland, however, access for those who might benefit from ECS is limited. This study used a qualitative approach to explore the insider experience of an ECS starter-pack developed by the author, an occupational therapist. The primary research questions: what is it really like to live with ECS, and what does it mean to live with ECS, were explored using a phenomenological methodology conducted in three phases. In Phase 1 fifteen people with high SCI met twice in four focus groups to discuss experiences and expectations of ECS. Thematic analysis (Krueger & Casey, 2000), influenced by the psychological phenomenological approach (Creswell, 1998), yielded three categories of rich, practical, phenomenological findings: ECS Usage and utility; ECS Expectations and The meaning of living with ECS. Phase 1 findings informed Phase 2 which consisted of the development of a generic electronic assistive technology pack (GrEAT) that included commercially available constituents as well as short instructional videos and an information booklet. This second phase culminated in a one-person, three-week pilot trial. Phase 3 involved a six person, 8-week trial of the GrEAT, followed by individual in-depth interviews. Interpretative Phenomenological Analysis IPA (Smith, Larkin & Flowers, 2009), aided by computer software ATLAS.ti and iMindmap, guided data analysis and identification of themes. Getting used to ECS, experienced as both a hassle and engaging, resulted in participants being able to Take back a little of what you have lost, which involved both feeling enabled and reclaiming a little doing. The findings of this study provide substantial insights into what it is like to live with ECS and the meanings attributed to that experience. Several practical, real world implications are discussed.
Resumo:
Buildings consume 40% of Ireland's total annual energy translating to 3.5 billion (2004). The EPBD directive (effective January 2003) places an onus on all member states to rate the energy performance of all buildings in excess of 50m2. Energy and environmental performance management systems for residential buildings do not exist and consist of an ad-hoc integration of wired building management systems and Monitoring & Targeting systems for non-residential buildings. These systems are unsophisticated and do not easily lend themselves to cost effective retrofit or integration with other enterprise management systems. It is commonly agreed that a 15-40% reduction of building energy consumption is achievable by efficiently operating buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems (BMS/EMS) is insufficient to perform the required performance based building assessment. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From this perspective wireless sensor technology provides the capability to provide reliable sensor data at the required temporal and spatial granularity associated with building energy management. In this paper, a wireless sensor network mote hardware design and implementation is presented for a building energy management application. Appropriate sensors were selected and interfaced with the developed system based on user requirements to meet both the building monitoring and metering requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks associated with minimisation of energy consumption in the built environment and the development of appropriate Building information models(BIM)to enable the design and development of energy efficient spaces.
Resumo:
The desire to obtain competitive advantage is a motivator for implementing Enterprise Resource Planning (ERP) Systems (Adam & O’Doherty, 2000). However, while it is accepted that Information Technology (IT) in general may contribute to the improvement of organisational performance (Melville, Kraemer, & Gurbaxani, 2004), the nature and extent of that contribution is poorly understood (Jacobs & Bendoly, 2003; Ravichandran & Lertwongsatien, 2005). Accordingly, Henderson and Venkatraman (1993) assert that it is the application of business and IT capabilities to develop and leverage a firm’s IT resources for organisational transformation, rather than the acquired technological functionality, that secures competitive advantage for firms. Application of the Resource Based View of the firm (Wernerfelt, 1984) and Dynamic Capabilities Theory (DCT) (Teece and Pisano (1998) in particular) may yield insights into whether or not the use of Enterprise Systems enhances organisations’ core capabilities and thereby obtains competitive advantage, sustainable or otherwise (Melville et al., 2004). An operational definition of Core Capabilities that is independent of the construct of Sustained Competitive Advantage is formulated. This Study proposes and utilises an applied Dynamic Capabilities framework to facilitate the investigation of the role of Enterprise Systems. The objective of this research study is to investigate the role of Enterprise Systems in the Core Dynamic Capabilities of Asset Lifecycle Management. The Study explores the activities of Asset Lifecycle Management, the Core Dynamic Capabilities inherent in Asset Lifecycle Management and the footprint of Enterprise Systems on those Dynamic Capabilities. Additionally, the study explains the mechanisms by which Enterprise Systems sustain the Exploitability and the Renewability of those Core Dynamic Capabilities. The study finds that Enterprise Systems contribute directly to the Value, Exploitability and Renewability of Core Dynamic Capabilities and indirectly to their Inimitability and Non-substitutability. The study concludes by presenting an applied Dynamic Capabilities framework, which integrates Alter (1992)’s definition of Information Systems with Teece and Pisano (1998)’s model of Dynamic Capabilities to provide a robust diagnostic for determining the sustained value generating contributions of Enterprise Systems. These frameworks are used in the conclusions to frame the findings of the study. The conclusions go on to assert that these frameworks are free - standing and analytically generalisable, per Siggelkow (2007) and Yin (2003).
Resumo:
In this paper, a wireless sensor network mote hardware design and implementation are introduced for building deployment application. The core of the mote design is based on the 8 bit AVR microcontroller, Atmega1281 and 2.4 GHz wireless communication chip, CC2420. The module PCB fabrication is using the stackable technology providing powerful configuration capability. Three main layers of size 25 mm2 are structured to form the mote; these are RF, sensor and power layers. The sensors were selected carefully to meet both the building monitoring and design requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks. Experiments show that the developed mote works effectively in giving stable data acquisition and owns good communication and power performance.
Resumo:
This is a user manual for your electronic assistive technology environmental control system trial pack or in simple words – a few bits of technology that can let you control some household appliances. This information is intended for you, your family and carers.