3 resultados para low and medium-low technology industries
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis explores the drivers of innovation in Irish high-technology businesses and estimates, in particular, the relative importance of interaction with external businesses and other organisations as a source of knowledge for innovation at the business-level. The thesis also examines the extent to which interaction for innovation in these businesses occurs on a local or regional basis. The study uses original survey data of 184 businesses in the Chemical and Pharmaceutical, Information and Communications Technology and Engineering and Electronic Devices sectors. The study considers both product and process innovation at the level of the business and develops new measures of innovation output. For the first time in an Irish study, the incidence and frequency of interaction is measured for each of a range of agents, other group companies, suppliers, customers, competitors, academic-based researchers and innovation-supporting agencies. The geographic proximity between the business and each of the most important of each of each category of agent is measured using average one-way driving distance, which is the first time such a measure has been used in an Irish study of innovation. Utilising econometric estimation techniques, it is found that interaction with customers, suppliers and innovation-supporting agencies is positively associated with innovation in Irish high-technology businesses. Surprisingly, however, interaction with academic-based researchers is found to have a negative effect on innovation output at the business-level. While interaction generally emerges as a positive influence on business innovation, there is little evidence that this occurs at a local or regional level. Furthermore, there is little support for the presence of localisation economies for high-technology sectors, though some tentative evidence of urbanisation economies. This has important implications for Irish regional, enterprise and innovation policy, which has emphasised the development of clusters of internationally competitive businesses. The thesis brings into question the suitability of a cluster-driven network based approach to business development and competitiveness in an Irish context.
Resumo:
In the last decade, we have witnessed the emergence of large, warehouse-scale data centres which have enabled new internet-based software applications such as cloud computing, search engines, social media, e-government etc. Such data centres consist of large collections of servers interconnected using short-reach (reach up to a few hundred meters) optical interconnect. Today, transceivers for these applications achieve up to 100Gb/s by multiplexing 10x 10Gb/s or 4x 25Gb/s channels. In the near future however, data centre operators have expressed a need for optical links which can support 400Gb/s up to 1Tb/s. The crucial challenge is to achieve this in the same footprint (same transceiver module) and with similar power consumption as today’s technology. Straightforward scaling of the currently used space or wavelength division multiplexing may be difficult to achieve: indeed a 1Tb/s transceiver would require integration of 40 VCSELs (vertical cavity surface emitting laser diode, widely used for short‐reach optical interconnect), 40 photodiodes and the electronics operating at 25Gb/s in the same module as today’s 100Gb/s transceiver. Pushing the bit rate on such links beyond today’s commercially available 100Gb/s/fibre will require new generations of VCSELs and their driver and receiver electronics. This work looks into a number of state‐of-the-art technologies and investigates their performance restraints and recommends different set of designs, specifically targeting multilevel modulation formats. Several methods to extend the bandwidth using deep submicron (65nm and 28nm) CMOS technology are explored in this work, while also maintaining a focus upon reducing power consumption and chip area. The techniques used were pre-emphasis in rising and falling edges of the signal and bandwidth extensions by inductive peaking and different local feedback techniques. These techniques have been applied to a transmitter and receiver developed for advanced modulation formats such as PAM-4 (4 level pulse amplitude modulation). Such modulation format can increase the throughput per individual channel, which helps to overcome the challenges mentioned above to realize 400Gb/s to 1Tb/s transceivers.
Resumo:
Leachate may be defined as any liquid percolating through deposited waste and emitted from or contained within a landfill. If leachate migrates from a site it may pose a severe threat to the surrounding environment. Increasingly stringent environmental legislation both at European level and national level (Republic of Ireland) regarding the operation of landfill sites, control of associated emissions, as well as requirements for restoration and aftercare management (up to 30 years) has prompted research for this project into the design and development of a low cost, low maintenance, low technology trial system to treat landfill leachate at Kinsale Road Landfill Site, located on the outskirts of Cork city. A trial leachate treatment plant was constructed consisting of 14 separate treatment units (10 open top cylindrical cells [Ø 1.8 m x 2.0 high] and four reed beds [5.0m x 5.0m x 1.0m]) incorporating various alternative natural treatment processes including reed beds (vertical flow [VF] and horizontal flow [HF]), grass treatment planes, compost units, timber chip units, compost-timber chip units, stratified sand filters and willow treatment plots. High treatment efficiencies were achieved in units operating in sequence containing compost and timber chip media, vertical flow reed beds and grass treatment planes. Pollutant load removal rates of 99% for NH4, 84% for BOD5, 46% for COD, 63% for suspended solids, 94% for iron and 98% for manganese were recorded in the final effluent of successfully operated sequences at irrigation rates of 945 l/m2/day in the cylindrical cells and 96 l/m2/day in the VF reed beds and grass treatment planes. Almost total pathogen removal (E. coli) occurred in the final effluent of the same sequence. Denitrification rates of 37% were achieved for a limited period. A draft, up-scaled leachate treatment plant is presented, based on treatment performance of the trial plant.