2 resultados para local-to-zero analysis
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis looks at how non-experts develop an opinion on climate change, and how those opinions could be changed by public discourse. I use Hubert Dreyfus’ account of skill acquisition to distinguish between experts and non-experts. I then use a combination of Walter Fisher’s narrative paradigm and the hermeneutics of Paul Ricœur to explore how non-experts form opinions, and how public narratives can provide a point of critique. In order to develop robust narratives, they must be financially realistic. I therefore consider the burgeoning field of environmental, social, and corporate governance (ESG) analysis as a way of informing realistic public narratives. I identify a potential problem with this approach: the Western assumptions of ESG analysis might make for public narratives that are not convincing to a non-Western audience. I then demonstrate how elements of the Chinese tradition, the Confucian, Neo-Confucian, and Daoist schools, as presented by David Hall and Roger Ames, can provide alternative assumptions to ESG analysis so that the public narratives will be more culturally adaptable. This research contributes to the discipline by bringing disparate traditions together in a unique way, into a practical project with a view towards applications. I conclude by considering avenues for further research.
Resumo:
This thesis investigates the emerging InAlN high electron mobility transistor (HEMT) technology with respect to its application in the space industry. The manufacturing processes and device performance of InAlN HEMTs were compared to AlGaN HEMTs, also produced as part of this work. RF gain up to 4 GHz was demonstrated in both InAlN and AlGaN HEMTs with gate lengths of 1 μm, with InAlN HEMTs generally showing higher channel currents (~150 c.f. 60 mA/mm) but also degraded leakage properties (~ 1 x 10-4 c.f. < 1 x 10-8 A/mm) with respect to AlGaN. An analysis of device reliability was undertaken using thermal stability, radiation hardness and off-state breakdown measurements. Both InAlN and AlGaN HEMTs showed excellent stability under space-like conditions, with electrical operation maintained after exposure to 9.2 Mrad of gamma radiation at a dose rate of 6.6 krad/hour over two months and after storage at 250°C for four weeks. Furthermore a link was established between the optimisation of device performance (RF gain, power handling capabilities and leakage properties) and reliability (radiation hardness, thermal stability and breakdown properties), particularly with respect to surface passivation. Following analysis of performance and reliability data, the InAlN HEMT device fabrication process was optimised by adjusting the metal Ohmic contact formation process (specifically metal stack thicknesses and anneal conditions) and surface passivation techniques (plasma power during dielectric layer deposition), based on an existing AlGaN HEMT process. This resulted in both a reduction of the contact resistivity to around 1 x 10-4 Ω.cm2 and the suppression of degrading trap-related effects, bringing the measured gate-lag close to zero. These discoveries fostered a greater understanding of the physical mechanisms involved in device operation and manufacture, which is elaborated upon in the final chapter.