4 resultados para lipids metabolites
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The aim of this thesis was to identify selected potential probiotic characteristics of Bifidobacterium longum strains isolated from human sources, and to examine these characteristics in detail using genomic and phenotypic techniques. One strain in particular Bifidobacterium longum DPC 6315 was the main focus of the thesis and this strain was used in both the manufacture of yoghurt and an animal study. In total, 38 B. longum strains, obtained from infants and adults, were assessed in vitro for the selected probiotic traits using a combined phenotypic and molecular approach. Differentiation of the 38 strains using amplified ribosomal DNA restriction analysis (ARDRA) into subspecies indicated that of the 38 bifidobacterial strains tested, 34 were designated B. longum subsp. longum and four B. longum subsp. infantis.
Resumo:
The molecular and cellular basis of stress pathology remains an important research question in biological science. A better understanding of this may enable the development of novel approaches for the treatment of stress-related disorders. There is a considerable body of scientific evidence suggesting that dietary lipids, phospholipids and omega-3 polyunsaturated fatty acids (n-3 PUFAs), have therapeutic potential for certain psychiatric disorders. Thus, we proposed n-3 PUFAs as a novel strategy for the prevention or amelioration of stress-related disorders. We hypothesised that these compounds would improve behavioural and neurobiological responses and alter gut microbial composition. Furthermore, we proposed a new mechanism of action exerted by n-3 PUFAs using an in vitro model of stress. Lastly, we explored the protective effects of both phospholipids and n-3 PUFAs against neuroinflammation, which has been shown to contribute to the development of stress-related disorders. We provide further evidence that glucocorticoids, inflammation and early-life stress induce vulnerability to psychopathologies. Specifically, we have demonstrated that corticosterone (CORT) alters cortical neuron and astrocyte percentage composition, reduces brain-derived-neuronal factor (BDNF) expression, and induces glucocorticoid receptor (GR) down-regulation in mixed cortical cultures. Interestingly, we found that lipopolysaccharide (LPS) treatment resulted in an over-expression of pro-inflammatory cytokines in cortical astrocyte cultures. Moreover, we demonstrate that early-life stress induces changes to the monoaminergic and immune systems as well as altered neuroendocrine response to stressors later in life. In addition, we found that early-life stress alters the gut microbiota in adulthood. These data demonstrate that n-3 PUFAs can attenuate CORT-induced cellular changes, but not those caused by LPS, within the cerebral cortex. Similarly, phospholipids were unable to reverse LPS-induced inflammation in cultured astrocytes. In addition, this thesis proposes that n-3 PUFAs may prevent the development or lessen the symptoms of mental illnesses, ameliorating anxiety- and depressive-like symptoms as well as cognitive effects, particularly when administered during neurodevelopment. Such effects may be mediated by GR activation as well as by modification of the gut microbiota composition. Taken together, our findings suggest that n-3 PUFAs have therapeutic potential for stress-related disorders and we provide evidence for the mechanisms by which they may exert these effects. These findings contribute to an exciting and growing body of research suggesting that nutritional interventions may have an important role to play in the treatment of stress-related psychiatric conditions.
Resumo:
The adult intestinal microbiota comprises a microbial ecosystem of approximately 100 trillion microorganisms, with specific bacterial communities holding distinct metabolic capabilities. Bacteria produce a range of bioactive compounds to survive unfavourable stimuli and to interact with other organisms, and generate several bioactive products during degradation of dietary constituents the host is not capable of digesting. This thesis addressed the impact of feeding potential probiotic bacteria and other dietary strategies such as pure fatty acids and prebiotics, on gut microbiota composition, short chain fatty acid (SCFA) production and modulation of metabolism in animal models. In the first experimental chapter (Chapter 2) a gas chromatography method for the quantification of SCFA was optimized and applied in the analysis of caecal samples obtained in animal studies described in other chapters of this thesis. In Chapter 3, t10, c12 CLA supplementation was shown to significantly alter murine gut microbiota composition and SCFA production rather than no supplementation. These changes were suggested to be extra factors affecting host lipid metabolism. Chapter 4 described the contrasting effects of CLA-producing strains, Bifidobacterium breve DPC 6330 and B. breve NCIMB 702258, on murine fat distribution/composition and gut microbiota composition, suggesting that these changes were most likely strain-dependent. In Chapter 5, dietary GABA-producing strain Lactobacillus brevis DPC 6108 was shown to significantly increase (p<0.05) serum insulin in healthy rats, leading to a second experiment using a type 1 diabetes rat model. Lb. brevis DPC 6108 administration did not change insulin levels in diabetic rats, but attenuated high levels of glucose when compared to diabetic control. However, an auto-immune-induced diabetes model was suggested as a better model to study GABA-related effects on diabetes. In Chapter 6 bovine milk oligosaccharides, 6’sialyllactose and Beneo Orafti P95 oligofructose supplementations were associated with depletion or reduction of less favourable bacteria, demonstrating that ingestion of these oligosaccharides might be a safe and effective approach to modulate populations of the intestinal microbiota. In Chapter 7 (General discussion) the major findings of all studies were reviewed and discussed.
Resumo:
Background: High-fat diets may contribute to metabolic disease via postprandial changes in serum endotoxin and inflammation. It is unclear how dietary fat composition may alter these parameters. We hypothesized that a meal rich in n-3 (ω3) fatty acids would reduce endotoxemia and associated inflammation but a saturated or n-6 (ω6) fatty acid-rich meal would increase postprandial serum endotoxin concentrations and systemic inflammation in healthy adults. Methods: Healthy adults (n = 20; mean age 25 ± 3.2 S.D. years) were enrolled in this single-blind, randomized, cross-over study. Participants were randomized to treatment and reported to the laboratory, after an overnight fast, on four occasions separated by at least one week. Participants were blinded to treatment meal and consumed one of four isoenergetic meals that provided: 1) 20 % fat (control; olive oil) or 35 % fat provided from 2) n-3 (ω3) (DHA = 500 mg; fish oil); 3) n-6 (ω6) (7.4 g; grapeseed oil) or 4) saturated fat (16 g; coconut oil). Baseline and postprandial blood samples were collected. Primary outcome was defined as the effect of treatment meal on postprandial endotoxemia. Serum was analyzed for metabolites, inflammatory markers, and endotoxin. Data from all 20 participants were analyzed using repeated-measures ANCOVA. Results: Participant serum endotoxin concentration was increased during the postprandial period after the consumption of the saturated fat meal but decreased after the n-3 meal (p < 0.05). The n-6 meal did not effect a different outcome in participant postprandial serum endotoxin concentration from that of the control meal (p > 0.05). There was no treatment meal effect on participant postprandial serum biomarkers of inflammation. Postprandial serum triacylglycerols were significantly elevated following the n-6 meal compared to the n-3 meal. Non-esterified fatty acids were significantly increased after consumption of the saturated fat meal compared to other treatment meals. Conclusions: Meal fatty acid composition modulates postprandial serum endotoxin concentration in healthy adults. However, postprandial endotoxin was not associated with systemic inflammation in vivo. Trial registration: This study was retrospectively registered at clinicaltrials.gov as NCT02521779 on July 28, 2015.