2 resultados para lateral overgrowths
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This work performs an extensive charterisation of precision targeted throwing in professional and recreational darts. The goal is to identify the contributing factors for lateral drift or throwing inaccuracy in the horizontal plane. A multitechnology approach is adopted whereby a custom built body area network of wireless inertial measurement devices monitor tilt, force and timing, an optical 3D motion capture system provides a complete kinematic model of the subject, electromyography sensors monitor muscle activation patterns and a force plate and pressure mat capture tactile pressure and force measurements. The study introduces the concept of constant throwing rhythm and highlights how landing errors in the horizontal plane can be attributable to a number of variations in arm force and speed, centre of gravity and the movements of some of the bodies non throw related extremities.
Resumo:
The work in this thesis concerns the advanced development of polymeric membranes of two types; pervaporation and lateral-flow. The former produced from a solution casting method and the latter from a phase separation. All membranes were produced from casting lacquers. Early research centred on the development of viable membranes. This led to a supported polymer blend pervaporation membrane. Selective layer: plasticized 4:1 mass ratio sodium-alginate: poly(vinyl-alcohol) polymer blend. Using this membrane, pervaporation separation of ethanol/water mixtures was carefully monitored as a function of film thickness and time. Contrary to literature expectations, these films showed increased selectivity and decreased flux as film thickness was reduced. It is argued that morphology and structure of the polymer blend changes with thickness and that these changes define membrane efficiency. Mixed matrix membrane development was done using spherical, discreet, size-monodisperse mesoporous silica particles of 1.8 - 2μm diameter, with pore diameters of ~1.8 nm were incorporated into a poly(vinyl alcohol) [PVA] matrix. Inclusion of silica benefitted pervaporation performance for the dehydration of ethanol, improving flux and selectivity throughout in all but the highest silica content samples. Early lateral-flow membrane research produced a membrane from a basic lacquer composition required for phase inversion; polymer, solvent and non-solvent. Results showed that bringing lacquers to cloud point benefits both the pore structure and skin layers of the membranes. Advancement of this work showed that incorporation of ethanol as a mesosolvent into the lacquer effectively enhances membrane pore structure resulting in an improvement in lateral flow rates of the final membranes. This project details the formation mechanics of pervaporation and lateral-flow membranes and how these can be controlled. The principle methods of control can be applied to the formation of any other flat sheet polymer membranes, opening many avenues of future membrane research and industrial application.