4 resultados para lactam
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis describes a systematic investigation of the mechanistic and synthetic aspects of intramolecular reactions of a series of α-diazo-β-oxo sulfone derivatives using copper and, to a lesser extent, rhodium catalysts. The key reaction pathways explored were C–H insertion and cyclopropanation, with hydride transfer competing in certain instances. Significantly, up to 98% ee has been achieved in the C–H insertion processes using copper-NaBARF-bisoxazoline catalysts, with the presence of the additive NaBARF critical to the efficiency of the transformations. This novel synthetic methodology provides access to a diverse range of enantioenriched heterocyclic compounds including thiopyrans, sulfolanes, β- and γ-lactams, in addition to carbocycles such as fused cyclopropanes. The synthesis of the α-diazosulfones required for subsequent investigations is initially described. Of the twenty seven diazo sulfones described, nineteen are novel and are fully characterised in this work. The discussion is subsequently focused on a study of the copper and rhodium catalysed reactions of the α-diazosulfones with Chapter Four concentrated on highly enantioselective C–H insertion to form thiopyrans and sufolanes, Chapter Five focused on C–H insertion to form fused sulfolanes, Chapter Six focused on C–H insertion in sulfonyl α-diazoamides where both lactam formation and / or thiopyran / sulfolane formation can result from competing C–H insertion pathways, while Chapter Seven focuses on cyclopropanation to yield fused cyclopropane derviatives. One of the key outcomes of this work is an insight into the steric and / or electronic factors on both the substrate and the catalyst which control regio-, diastereo- and enantioselectivity patterns in these synthetically powerful transformations. Full experimental details for the synthesis and spectral characterisation of the compounds are included at the end of each Chapter, with details of chiral stationary phase HPLC analysis and assignment of absolute stereochemistry included in the appendix.
Resumo:
This thesis outlines the design and application of new routes towards a range of novel bisindolylmaleimide and indolo[2,3-a]carbazole derivatives, and evaluation of their biological effects and their chemotherapeutic potential. A key part of this work focussed on utilising a hydroxymaleimide as a replacement for the prevalent lactam/maleimide functionality and forming a series of novel derivatives through substitution on the indole nitrogens. To achieve this, a robust synthetic strategy was developed which allowed access to key maleic anhydride intermediates using Perkin-type methodology. These hydroxymaleimides were further modified via a Lossen rearrangement to furnish a series of analogues containing a 6-membered F-ring. The theme of F-ring modulation was further expanded through the utilisation of a second route involving the design and synthesis of β-keto ester intermediates, which afforded novel derivatives containing pyrazolone and isocytosine headgroups, and various N-substituents. Work on a further route involving a dione intermediate resulted in the isolation of a bisindolyl derivative with a novel imidazole F-ring. Following the synthesis of 42 novel compounds, extensive screening was undertaken using the NCI-60 cell line screen, with twelve candidates progressing to evaluation via the five dose assay. This led to the identification of several lead compounds with high cytotoxicity and excellent selectivity profiles, which included derivatives with low nanomolar GI50 values against specific cancer cell lines, and also derivatives with selective cytotoxicity. Preliminary results from a kinase screen indicated noteworthy selectivity towards GSK3α/β and PIM1 kinases, with low micromolar IC50 values being observed for these enzymes.
Resumo:
Intramolecular C–H insertion reactions of α-diazocarbonyl compounds typically proceed with preferential five-membered ring formation. However, the presence of a heteroatom such as nitrogen can activate an adjacent C–H site toward insertion resulting in regiocontrol issues. In the case of α-diazoacetamide derivatives, both β- and γ-lactam products are possible owing to this activating effect. Both β- and γ-lactam products are powerful synthetic building blocks in the area of organic synthesis, as well as a common scaffold in a range of natural and pharmaceutical products and therefore C–H insertion reactions to form such compounds are attractive processes.
Resumo:
Antibiotic resistance is an increasing threat to our ability to treat infectious diseases. Thus, understanding the effects of antibiotics on the gut microbiota, as well as the potential for such populations to act as a reservoir for resistance genes, is imperative. This thesis set out to investigate the gut microbiota of antibiotic treated infants compared to untreated controls using high-throughput DNA sequencing. The results demonstrated the significant effects of antibiotic treatment, resulting in increased proportions of Proteobacteria and decreased proportions of Bifidobacterium. The species diversity of bifidobacteria was also reduced. This thesis also highlights the ability of the human gut microbiota to act as an antibiotic resistance reservoir. Using metagenomic DNA extracted from faecal samples from adult males, PCR was employed to demonstrate the prevalence and diversity of aminoglycoside and β-lactam resistance genes in the adult gut microbiota and highlighted the merits of the approach adopted. Using infant faecal samples, we constructed and screened a second fosmid metagenomic bank for the same families of resistance genes and demonstrated that the infant gut microbiota is also a reservoir for resistance genes. Using in silico analysis we highlighted the existence of putative aminoglycoside and β-lactam resistance determinants within the genomes of Bifidobacterium species. In the case of the β- lactamases, these appear to be mis-annotated. However, through homologous recombination-mediated insertional inactivation, we have demonstrated that the putative aminoglycoside resistance proteins do contribute to resistance. In additional studies, we investigated the effects of short bowel syndrome on infant gut microbiota, the immune system and bile acid metabolism. We also sequenced the microbiota of the human vermiform appendix, highlighting its complexity. Finally, this thesis demonstrated the strain specific nature of 2 different probiotic CLA-producing Bifidobacterium breve on the murine gut microbiota.