4 resultados para invasive cervical cancer (ICC)

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cervical cancer is the second most common female cancer worldwide. Cervical screening programmes can reduce the incidence of cervical cancer by up to 80 percent if the invited women participate. Previous Irish research has associated screening attendance with subjective norms, anticipated regret, higher socio-economic status and education. Greater perceived screening barriers and lacking knowledge were associated with avoidance. These findings support a variety of expectancy-value theories of behaviour. They also suggest that expectancy-value theories could benefit from the inclusion of affective predictors of behaviour, like anticipated regret. In 2008 the Republic of Ireland introduced the National Cervical Screening Programme (NCSP). This research seeks to identify the predictors of participation in the NCSP. A systematic review of reviews showed that predictors of screening participation clustered into environmental and psychological influences. There is a gap in the evidence synthesis of associations with personal characteristics and health beliefs. Thematic analysis of focus group interviews confirmed the validity of many screening predictors identified by the systematic review and expectancy-value theories. A survey of these predictors suggested that reduced screening barriers might encourage first-time participation, while regular attendance requires greater endorsement of screening benefits and stronger subjective norm and intention. Positive attitude, rather than knowledge, appeared to be crucial for strong intention, so the final study piloted an experiment comparing the utility of positive attitude in strengthening intention to the utility of information provision. Despite lacking significant differences between conditions, content analysis of participant comments suggested that a full trial would be worthwhile, given purposive sampling and improved sample retention. These findings agree with previous Irish research on the importance of screening intention, although its association with attitude appeared to be stronger in the present research. The findings further indicate that future screening promotion should consider interventions based on patients’ experiences of screening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Human papillomavirus (HPV) causes cervical cancer and external genital warts. The purpose of this study is to document the genotype distribution of HPV in females aged between 18 and 34 who self-referred to an STI clinic with visible external genital warts (EGW). Scrapings were taken from visible external genital warts (EGW). These scrapings were analysed by PCR for the presence of HPV DNA. Positive samples were then genotyped by means of a commercially available assay (LiPA). A comparison of genotyping results determined by the LiPA assay and direct amplicon DNA sequencing was also performed. Results: Ninety-two patients out of 105 samples (88%) had detectable levels of HPV DNA. The majority of individuals with EGW (66%) showed the presence of two or more genotypes. The most common HPV genotypes present in the study population were HPV-6, HPV-11, HPV-16, HPV-18, HPV-33 and HPV-53. Potential effects of vaccination on HPV molecular epidemiology indicate that 40% of the patients could have been protected from the high risk genotypes HPV-16 and HPV-18.Conclusion: This is the first report of the molecular epidemiology of external genital warts in women aged between 18 and 34 from Ireland based on results from a LiPA assay. The study shows that most individuals are infected with multiple genotypes including those with high oncogenic potential and that the newly available HPV vaccines could have a significant impact on prevalence of the most common HPV genotypes in this study population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis investigates the mechanisms by which HRG-1 contributes to the invasive and cytoprotective signalling pathways in cancer cells through its effects on VATPase activity and heme transport. Plasma membrane-localised V-ATPase activity correlates with enhanced metastatic potential in cancer cells, which is attributed to extrusion of protons into the extracellular space and activation of pH-sensitive, extracellular matrix degrading-proteases. We found that HRG-1 is co-expressed with the V-ATPase at the plasma membrane of certain aggressive cancer cell types. Modulation of HRG-1 expression altered both the localisation and activity of the VATPase. We also found that HRG-1 enhances trafficking of essential transporters such as the glucose transporter (GLUT-1) in cancer cells, and increases glucose uptake, which is required for cancer cell growth, metabolism and V-ATPase assembly. Heme is potentially cytotoxic, owing to its iron moiety, and therefore the trafficking of heme is tightly controlled in cells. We hypothesised that HRG-1 is required for the transport of heme to intracellular compartments. Importantly, we found that HRG-1 interacts with the heme oxygenases that are necessary for heme catabolism. HRG-1 is also required for trafficking of both heme-bound and nonheme-bound receptors and suppression of HRG-1 results in perturbed receptor trafficking to the lysosome. Suppression of HRG-1 in HeLa cells increases toxic heme accumulation, reactive oxygen species accumulation, and DNA damage resulting in caspasedependent cell death. Mutation of essential heme binding residues in HRG-1 results in decreased heme binding to HRG-1. Interestingly, cells expressing heme-binding HRG-1 mutants exhibit decreased internalisation of the transferrin receptor compared to cells expressing wildtype HRG-1. These findings suggest that HRG- 1/heme trafficking contributes to a hitherto unappreciated aspect of receptormediated endocytosis. Overall, the findings of this thesis show that HRG-1-mediated regulation of intracellular and extracellular pH through V-ATPase activity is essential for a functioning endocytic pathway. This is critical for cells to acquire nutrients such as folate, iron and glucose and to mediate signalling in response to growth factor activation. Thus, HRG-1 facilitates enhanced metabolic activity of cancer cells to enable tumour growth and metastasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer is one of the most common cancers diagnosed in men. Whilst treatments for early-stage disease are largely effective, current therapies for metastatic prostate cancer, particularly for bone metastasis, offer only a few months increased lifespan at best. Hence new treatments are urgently required. Small interfering RNA (siRNA) has been investigated for the treatment of prostate cancer where it can ‘silence’ specific cancer-related genes. However the clinical application of siRNA-based gene therapy is limited due to the absence of an optimised gene delivery vector. The optimisation of such gene delivery vectors is routinely undertaken in vitro using 2D cell culture on plastic dishes which does not accurately simulate the in vivo bone cancer metastasis microenvironment. The goal of this thesis was to assess the potential of two different targeted delivery vectors (gold or modified β-cyclodextrin derivatives) to facilitate siRNA receptor-mediated uptake into prostate cancer cells. Furthermore, this project aimed to develop a more physiologically relevant 3D in vitro cell culture model, to mimic prostate cancer bone metastasis, which is suitable for evaluating the delivery of nanoparticulate gene therapeutics. In the first instance, cationic derivatives of gold and β-cyclodextrin were synthesized to complex anionic siRNA. The delivery vectors were targeted to prostate cancer cells using the anisamide ligand which has high affinity for the sigma receptor that is overexpressed by prostate cancer cells. The gold nanoparticle demonstrated high levels of uptake into prostate cancer PC3 cells and efficient gene silencing when transfection was performed in serum-free media. However, due to the absence of a poly(ethylene glycol) (PEG) stabilising group, the formulation was unsuitable for use in serum-containing conditions. Conversely, the modified β-cyclodextrin formulation demonstrated enhanced stability in the presence of serum due to the inclusion of a PEG chain onto which the anisamide ligand was conjugated. However, the maximum level of gene silencing efficacy from three different prostate cancer cell lines (DU145, VCaP and PC3 cells) was 30 %, suggesting that further optimisation of the formulation would be required prior to application in vivo. In order to develop a more physiologically-relevant in vitro model of prostate cancer bone metastasis, prostate cancer cells (PC3 and LNCaP cells) were cultured in 3D on collagenbased scaffolds engineered to mimic the bone microenvironment. While the model was suitable for assessing nanoparticle-mediated gene knockdown, prostate cancer cells demonstrated a phenotype with lower invasive potential when grown on the scaffolds relative to standard 2D cell culture. Hence, prostate cancer cells (PC3 and LNCaP cells) were subsequently co-cultured with bone osteoblast cells (hFOB 1.19 cells) to enhance the physiological relevance of the model. Co-cultures secreted elevated levels of the MMP9 enzyme, a marker of prostate cancer metastasis, relative to prostate cancer cell monocultures (2D and 3D) indicating enhanced physiological relevance of the model. Furthermore, the coculture model proved suitable for investigating nanoparticle-mediated gene silencing. In conclusion, the work outlined in this thesis identified two different sigma receptor-targeted gene delivery vectors with potential for the treatment of prostate cancer. In addition, a more physiologically relevant model of prostate cancer bone metastasis was developed with the capacity to help optimise gene delivery vectors for the treatment of prostate cancer.