2 resultados para interrogation to decide whether person appropriate party to proceeding

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the development of an open-source system for virtual bronchoscopy used in combination with electromagnetic instrument tracking. The end application is virtual navigation of the lung for biopsy of early stage cancer nodules. The open-source platform 3D Slicer was used for creating freely available algorithms for virtual bronchscopy. Firstly, the development of an open-source semi-automatic algorithm for prediction of solitary pulmonary nodule malignancy is presented. This approach may help the physician decide whether to proceed with biopsy of the nodule. The user-selected nodule is segmented in order to extract radiological characteristics (i.e., size, location, edge smoothness, calcification presence, cavity wall thickness) which are combined with patient information to calculate likelihood of malignancy. The overall accuracy of the algorithm is shown to be high compared to independent experts' assessment of malignancy. The algorithm is also compared with two different predictors, and our approach is shown to provide the best overall prediction accuracy. The development of an airway segmentation algorithm which extracts the airway tree from surrounding structures on chest Computed Tomography (CT) images is then described. This represents the first fundamental step toward the creation of a virtual bronchoscopy system. Clinical and ex-vivo images are used to evaluate performance of the algorithm. Different CT scan parameters are investigated and parameters for successful airway segmentation are optimized. Slice thickness is the most affecting parameter, while variation of reconstruction kernel and radiation dose is shown to be less critical. Airway segmentation is used to create a 3D rendered model of the airway tree for virtual navigation. Finally, the first open-source virtual bronchoscopy system was combined with electromagnetic tracking of the bronchoscope for the development of a GPS-like system for navigating within the lungs. Tools for pre-procedural planning and for helping with navigation are provided. Registration between the lungs of the patient and the virtually reconstructed airway tree is achieved using a landmark-based approach. In an attempt to reduce difficulties with registration errors, we also implemented a landmark-free registration method based on a balanced airway survey. In-vitro and in-vivo testing showed good accuracy for this registration approach. The centreline of the 3D airway model is extracted and used to compensate for possible registration errors. Tools are provided to select a target for biopsy on the patient CT image, and pathways from the trachea towards the selected targets are automatically created. The pathways guide the physician during navigation, while distance to target information is updated in real-time and presented to the user. During navigation, video from the bronchoscope is streamed and presented to the physician next to the 3D rendered image. The electromagnetic tracking is implemented with 5 DOF sensing that does not provide roll rotation information. An intensity-based image registration approach is implemented to rotate the virtual image according to the bronchoscope's rotations. The virtual bronchoscopy system is shown to be easy to use and accurate in replicating the clinical setting, as demonstrated in the pre-clinical environment of a breathing lung method. Animal studies were performed to evaluate the overall system performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Against a backdrop of ever-changing diagnostic and treatment modalities, stakeholder perceptions (medical students, clinicians, anatomy educators) are crucial for the design of an anatomy curriculum which fulfils the criteria required for safe medical practice. This study compared perceptions of students, practising clinicians, and anatomy educators with respect to the relevance of anatomy education to medicine. Methods: A quantitative survey was administered to undergraduate entry (n = 352) and graduate entry students (n = 219) at two Irish medical schools, recently graduated Irish clinicians (n = 146), and anatomy educators based in Irish and British medical schools (n = 30). Areas addressed included the association of anatomy with medical education and clinical practice, mode of instruction, and curriculum duration. Results: Graduate-entry students were less likely to associate anatomy with the development of professionalism, teamwork skills, or improved awareness of ethics in medicine. Clinicians highlighted the challenge of tailoring anatomy education to increase student readiness to function effectively in a clinical role. Anatomy educators indicated dissatisfaction with the time available for anatomy within medical curricula, and were equivocal about whether curriculum content should be responsive to societal feedback. Conclusions: The group differences identified in the current study highlight areas and requirements which medical education curriculum developers should be sensitive to when designing anatomy courses.