4 resultados para haptic grasp

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in interactive technologies have seen major changes in the manner in which artists, performers, and creative individuals interact with digital music technology; this is due to the increasing variety of interactive technologies that are readily available today. Digital Musical Instruments (DMIs) present musicians with performance challenges that are unique to this form of computer music. One of the most significant deviations from conventional acoustic musical instruments is the level of physical feedback conveyed by the instrument to the user. Currently, new interfaces for musical expression are not designed to be as physically communicative as acoustic instruments. Specifically, DMIs are often void of haptic feedback and therefore lack the ability to impart important performance information to the user. Moreover, there currently is no standardised way to measure the effect of this lack of physical feedback. Best practice would expect that there should be a set of methods to effectively, repeatedly, and quantifiably evaluate the functionality, usability, and user experience of DMIs. Earlier theoretical and technological applications of haptics have tried to address device performance issues associated with the lack of feedback in DMI designs and it has been argued that the level of haptic feedback presented to a user can significantly affect the user’s overall emotive feeling towards a musical device. The outcome of the investigations contained within this thesis are intended to inform new haptic interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since Wireless Sensor Networks (WSNs) are subject to failures, fault-tolerance becomes an important requirement for many WSN applications. Fault-tolerance can be enabled in different areas of WSN design and operation, including the Medium Access Control (MAC) layer and the initial topology design. To be robust to failures, a MAC protocol must be able to adapt to traffic fluctuations and topology dynamics. We design ER-MAC that can switch from energy-efficient operation in normal monitoring to reliable and fast delivery for emergency monitoring, and vice versa. It also can prioritise high priority packets and guarantee fair packet deliveries from all sensor nodes. Topology design supports fault-tolerance by ensuring that there are alternative acceptable routes to data sinks when failures occur. We provide solutions for four topology planning problems: Additional Relay Placement (ARP), Additional Backup Placement (ABP), Multiple Sink Placement (MSP), and Multiple Sink and Relay Placement (MSRP). Our solutions use a local search technique based on Greedy Randomized Adaptive Search Procedures (GRASP). GRASP-ARP deploys relays for (k,l)-sink-connectivity, where each sensor node must have k vertex-disjoint paths of length ≤ l. To count how many disjoint paths a node has, we propose Counting-Paths. GRASP-ABP deploys fewer relays than GRASP-ARP by focusing only on the most important nodes – those whose failure has the worst effect. To identify such nodes, we define Length-constrained Connectivity and Rerouting Centrality (l-CRC). Greedy-MSP and GRASP-MSP place minimal cost sinks to ensure that each sensor node in the network is double-covered, i.e. has two length-bounded paths to two sinks. Greedy-MSRP and GRASP-MSRP deploy sinks and relays with minimal cost to make the network double-covered and non-critical, i.e. all sensor nodes must have length-bounded alternative paths to sinks when an arbitrary sensor node fails. We then evaluate the fault-tolerance of each topology in data gathering simulations using ER-MAC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The landscape of late medieval Ireland, like most places in Europe, was characterized by intensified agricultural exploitation, the growth and founding of towns and cities and the construction of large stone edifices, such as castles and monasteries. None of these could have taken place without iron. Axes were needed for clearing woodland, ploughs for turning the soil, saws for wooden buildings and hammers and chisels for the stone ones, all of which could not realistically have been made from any other material. The many battles, waged with ever increasingly sophisticated weaponry, needed a steady supply of iron and steel. During the same period, the European iron industry itself underwent its most fundamental transformation since its inception; at the beginning of the period it was almost exclusively based on small furnaces producing solid blooms and by the turn of the seventeenth century it was largely based on liquid-iron production in blast-furnaces the size of a house. One of the great advantages of studying the archaeology of ironworking is that its main residue, slag, is often produced in copious amounts both during smelting and smithing, is virtually indestructible and has very little secondary use. This means that most sites where ironworking was carried out are readily recognizable as such by the occurrence of this slag. Moreover, visual examination can distinguish between various types of slag, which are often characteristic for the activity from which they derive. The ubiquity of ironworking in the period under study further means that we have large amounts of residues available for study, allowing us to distinguish patterns both inside assemblages and between sites. Disadvantages of the nature of the remains related to ironworking include the poor preservation of the installations used, especially the furnaces, which were often built out of clay and located above ground. Added to this are the many parameters contributing to the formation of the above-mentioned slag, making its composition difficult to connect to a certain technology or activity. Ironworking technology in late medieval Ireland has thus far not been studied in detail. Much of the archaeological literature on the subject is still tainted by the erroneous attribution of the main type of slag, bun-shaped cakes, to smelting activities. The large-scale infrastructure works of the first decade of the twenty-first century have led to an exponential increase in the amount of sites available for study. At the same time, much of the material related to metalworking recovered during these boom-years was subjected to specialist analysis. This has led to a near-complete overhaul of our knowledge of early ironworking in Ireland. Although many of these new insights are quickly seeping into the general literature, no concise overviews on the current understanding of the early Irish ironworking technology have been published to date. The above then presented a unique opportunity to apply these new insights to the extensive body of archaeological data we now possess. The resulting archaeological information was supplemented with, and compared to, that contained in the historical sources relating to Ireland for the same period. This added insights into aspects of the industry often difficult to grasp solely through the archaeological sources, such as the people involved and the trade in iron. Additionally, overviews on several other topics, such as a new distribution map of Irish iron ores and a first analysis of the information on iron smelting and smithing in late medieval western Europe, were compiled to allow this new knowledge on late medieval Irish ironworking to be put into a wider context. Contrary to current views, it appears that it is not smelting technology which differentiates Irish ironworking from the rest of Europe in the late medieval period, but its smithing technology and organisation. The Irish iron-smelting furnaces are generally of the slag-tapping variety, like their other European counterparts. Smithing, on the other hand, is carried out at ground-level until at least the sixteenth century in Ireland, whereas waist-level hearths become the norm further afield from the fourteenth century onwards. Ceramic tuyeres continue to be used as bellows protectors, whereas these are unknown elsewhere on the continent. Moreover, the lack of market centres at different times in late medieval Ireland, led to the appearance of isolated rural forges, a type of site unencountered in other European countries during that period. When these market centres are present, they appear to be the settings where bloom smithing is carried out. In summary, the research below not only offered us the opportunity to give late medieval ironworking the place it deserves in the broader knowledge of Ireland's past, but it also provided both a base for future research within the discipline, as well as a research model applicable to different time periods, geographical areas and, perhaps, different industries..

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While a great amount of attention is being given to the development of nanodevices, both through academic research and private industry, the field is still on the verge. Progress hinges upon the development of tools and components that can precisely control the interaction between light and matter, and that can be efficiently integrated into nano-devices. Nanofibers are one of the most promising candidates for such purposes. However, in order to fully exploit their potential, a more intimate knowledge of how nanofibers interact with single neutral atoms must be gained. As we learn more about the properties of nanofiber modes, and the way they interface with atoms, and as the technology develops that allows them to be prepared with more precisely known properties, they become more and more adaptable and effective. The work presented in this thesis touches on many topics, which is testament to the broad range of applications and high degree of promise that nanofibers hold. For immediate use, we need to fully grasp how they can be best implemented as sensors, filters, detectors, and switches in existing nano-technologies. Areas of interest also include how they might be best exploited for probing atom-surface interactions, single-atom detection and single photon generation. Nanofiber research is also motivated by their potential integration into fundamental cold atom quantum experiments, and the role they can play there. Combining nanofibers with existing optical and quantum technologies is a powerful strategy for advancing areas like quantum computation, quantum information processing, and quantum communication. In this thesis I present a variety of theoretical work, which explores a range of the applications listed above. The first work presented concerns the use of the evanescent fields around a nanofiber to manipulate an existing trapping geometry and therefore influence the centre-of-mass dynamics of the atom. The second work presented explores interesting trapping geometries that can be achieved in the vicinity of a fiber in which just four modes are allowed to propagate. In a third study I explore the use of a nanofiber as a detector of small numbers of photons by calculating the rate of emission into the fiber modes when the fiber is moved along next to a regularly separated array of atoms. Also included are some results from a work in progress, where I consider the scattered field that appears along the nanofiber axis when a small number of atoms trapped along that axis are illuminated orthogonally; some interesting preliminary results are outlined. Finally, in contrast with the rest of the thesis, I consider some interesting physics that can be done in one of the trapping geometries that can be created around the fiber, here I explore the ground states of a phase separated two-component superfluid Bose-Einstein condensate trapped in a toroidal potential.