3 resultados para gastro-oesophageal reflux

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oesophageal cancer is an aggressive tumour which responds poorly to both chemotherapy and radiation therapy and has a poor prognosis. Thus, a greater understanding of the biology of oesophageal cancer is needed in order to identify novel therapeutic targets. Among these targets p38 MAPK isoforms are becoming increasingly important for a variety of cellular functions. The physiological functions of p38α and -β are now well documented in contrast to -γ and -δ which are comparatively under-studied and ill-defined. A major obstacle to deciphering the role(s) of the latter two p38 isoforms is the lack of specific chemical activators and inhibitors. In this study, we analysed p38 MAPK isoform expression in oesophageal cancer cell lines as well as human normal and tumour tissue. We observed specifically differential p38δ expression. The role(s) of p38δ and active (phosphorylated) p38δ (p-p38δ) in oesophageal squamous cell carcinoma (OESCC) was delineated using wild-type p38δ as well as active p-p38δ, generated by fusing p38δ to its upstream activator MKK6b(E) via a decapeptide (Gly-Glu)5 linker. OESCC cell lines which are p38δ-negative (KE-3 and -8) grew more quickly than cell lines (KE-6 and -10) which express endogenous p38δ. Re-introduction of p38δ resulted in a time-dependent decrease in OESCC cell proliferation which was exacerbated with p-p38δ. In addition, we observed that p38δ and p-p38δ negatively regulated OESCC cell migration in vitro. Finally both p38δ and p-p38δ altered OESCC anchorage-independent growth. Our results suggest that p38δ and p-p38δ have a role in the suppression of OESCC. Our research may provide a new potential target for the treatment of oesophageal cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic capsules are an example of this. In this paper, a diagnostic capsule technology is described based on direct-access sensing of the Gastro Intestinal (GI) fluids throughout the GI tract. The objective of this paper is two-fold: i) develop a packaging method for a direct access sensor, ii) develop an encapsulation method to protect the system electronics. The integrity of the interconnection after sensor packaging and encapsulation is correlated to its reliability and thus of importance. The zero level packaging of the sensor was achieved by using a so called Flip Chip Over Hole (FCOH) method. This allowed the fluidic sensing media to interface with the sensor, while the rest of the chip including the electrical connections can be insulated effectively. Initial tests using Anisotropic Conductive Adhesive (ACA) interconnect for the FCOH demonstrated good electrical connections and functionality of the sensor chip. Also a preliminary encapsulation trial of the flip chipped sensor on a flexible test substrate has been carried out and showed that silicone encapsulation of the system is a viable option.