8 resultados para gain composition
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis is presented in two parts. Data for this research is from the Cork BASELINE (Babies after SCOPE, Evaluating Longitudinal Impact using Neurological and Nutritional Endpoints) Birth Cohort Study (n = 2137). In this prospective birth cohort study, pediatric follow-up with in-person appointments were repeated from the time of birth through to 2, 6 and 12 months, and at 2 years. Body composition was measured by air displacement plethysmography at birth and at 2 months using the PEA POD Infant Body Composition Tracking System. This thesis provides the first extensive report on the study’s 2 year assessment. In part one, the aims were to investigate potential early-life risk factors for childhood overweight and obesity, including rapid growth and body composition in infancy and umbilical cord concentrations of leptin and high molecular weight (HMW) adiponectin. This research is the first to describe rapid growth in early infancy in terms of changes in direct measures of body composition. These are also the first data to examine associations between umbilical cord leptin and HMW adiponectin concentrations and changes in fat and lean mass in early infancy. These data provide additional insight into characterising the growth trajectory in infancy and into the role of perinatal factors in determining infant growth and subsequent overweight/obesity risk. In part two of this thesis, the aims were to quantify vitamin D intake and status at 2 years and to investigate whether 25-hydroxyvitamin D [25(OH)D] concentrations in early pregnancy and in umbilical cord blood are associated with infant growth and body composition. There was a low prevalence of vitamin D deficiency among Irish 2 year olds (n = 742) despite a high prevalence of inadequate intakes and high latitude (51°N). Maternal 25(OH)D concentrations at 15 weeks gestation and cord 25(OH)D concentrations at delivery were not associated with infant growth or adiposity.
Resumo:
Advances in culture independent technologies over the last decade have highlighted the pivotal role which the gut microbiota plays in maintaining human health. Conversely, perturbations to the composition or actions of the ‘normal/functioning’ microbiota have been frequently associated with the pathogenesis of several disease states. Therefore the selective modulation of enteric microbial communities represents a viable target for the development of novel treatments for such diseases. Notably, while bovine whey proteins and exercise have been shown to positively influence several physiological processes, such as energy balance, their effect on the composition or functionality of the gut microbiota remains largely unknown. In this thesis, a variety of ex vivo, murine and human models are used in conjunction with high-throughput DNA sequencing-based analysis to provide valuable and novel insights into the impact of both whey proteins and exercise on enteric microbial communities. Overall the results presented in this thesis highlight that the consumption both whey protein isolate (WPI), and individual component proteins of whey such as bovine serum albumin (BSA) and lactoferrin, reduce high fat diet associated body weight gain and are associated with beneficial alterations within the murine gut microbiota. Although the impact of exercise on enteric microbial communities remains less clear, it may be that longer term investigations are required for the true effect of exercise on the gut microbiota to be fully elucidated.
Exploring processes of indeterminate determinism in music composition, programming and improvisation
Resumo:
This portfolio consists of 15 original musical works. Taking the form of electronic and acousmatic music, multimedia, and scores, these chamber works serve as a result of experimentation and improvisation with individually built computer interfaces. The accompanying commentary provides discourse on the conceptual practice of these interfaces becoming a compositional entity that present a multi-interpretative opportunity to explore, engage, and personalise. Following this, the commentary examines the path of creative decisions and musical choices that formed both these interfaces and the resulting musical and visual works. This portfolio is accompanied by interfaces used, transcoded interfacing behavioural information, and documented improvisational findings.
Resumo:
Schizophrenia represents one of the world’s most devastating illnesses due to its often lifelong course and debilitating nature. The treatment of schizophrenia has vastly improved over recent decades with the discovery of several antipsychotic compounds; however these drugs are not without adverse effects that must be addressed to maximize their therapeutic value. Newer, atypical, antipsychotics are associated with a compilation of serious metabolic side effects including weight gain, insulin resistance, fat deposition, glucose dysregulation and ensuing co-morbidities such as type II diabetes mellitus. The mechanisms underlying these side effects remain to be fully elucidated and adequate interventions are lacking. Further understanding of the factors that contribute these side effects is therefore required in order to develop effective adjunctive therapies and to potentially design antipsychotic drugs in the future with reduced impact on the metabolic health of patients. We investigated if the gut microbiota represented a novel mechanism contributing to the metabolic dysfunction associated with atypical antipsychotics. The gut microbiota comprises the bacteria that exist symbiotically within the gastrointestinal tract, and has been shown in recent years to be involved in several aspects of energy balance and metabolism. We have demonstrated that administration of certain antipsychotics in the rat results in an altered microbiota profile and, moreover, that the microbiota is required for the full scale of metabolic dysfunction to occur. We have further shown that specific antibiotics can attenuate certain aspects of olanzapine and risperidone–induced metabolic dysfunction, in particular fat deposition and adipose tissue inflammation. Mechanisms underlying this novel link appear to involve energy utilization via expression of lipogenic genes as well as reduced inflammatory tone. Taken together, these data indicate that the gut microbiota is an important factor involved in the myriad of metabolic complications associated with antipsychotic therapy. Furthermore, these data support the future investigation of microbial-based therapeutics for not only antipsychotic-induced weight gain but also for tackling the global obesity epidemic.
Resumo:
Numerous laboratory experiments have been performed in an attempt to mimic atmospheric secondary organic aerosol (SOA) formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. In this study, we generated SOA in a simulation chamber from the ozonolysis of α-pinene and a biogenic volatile organic compound (BVOC) mixture containing α- and β-pinene, Δ3-carene, and isoprene. The detailed molecular composition of laboratory-generated SOA was compared with that of background ambient aerosol collected at a boreal forest site (Hyytiälä, Finland) and an urban location (Cork, Ireland) using direct infusion nanoelectrospray ultrahigh resolution mass spectrometry. Kendrick Mass Defect and Van Krevelen approaches were used to identify and compare compound classes and distributions of the detected species. The laboratory-generated SOA contained a distinguishable group of dimers that was not observed in the ambient samples. The presence of dimers was found to be less pronounced in the SOA from the VOC mixtures when compared to the one component precursor system. The elemental composition of the compounds identified in the monomeric region from the ozonolysis of both α-pinene and VOC mixtures represented the ambient organic composition of particles collected at the boreal forest site reasonably well, with about 70% of common molecular formulae. In contrast, large differences were found between the laboratory-generated BVOC samples and the ambient urban sample. To our knowledge this is the first direct comparison of molecular composition of laboratory-generated SOA from BVOC mixtures and ambient samples.
Resumo:
In an attempt to provide an analytical entry point into my compositional practice, I have identified eight themes which are significantly recurrent: reduction – the selection of a small number of elements; imperfection – a damaged or warped characteristic of sound; hierarchy – a concern with the roles of instruments with regard to their relative prominence; motion – apparently static sound masses consist of fine internal movement; listener perception – expectations for change influence the experience of affect; translation – the transitioning of electronic sounds to the acoustic realm, and vice versa; immersion – the creation of an accommodating soundscape; blurring – smearing and overlapping sounds or genres. Each of these eight factors is associated with relevant precedents in the history and theory of music that have been influential on my work. These include the minimalist compositions of Steve Reich and Arvo Pärt; the lo-fi aesthetic of Boards of Canada and My Bloody Valentine; concerns with political hierarchy in the work of Louis Andriessen; the variations of dynamics and microtonal shifts of Giacinto Scelsi; Leonard B. Meyer's account of expectation in music; cross-fertilisation of the acoustic and electronic in pieces by Gérard Grisey and Gyorgy Ligeti; the immersive technique of Brian Eno's ambient music; and the overlapping sounds of Aphex Twin. These eight factors are variously applicable to the eleven submitted pieces, which are individually analysed with reference to the most significant of the categories. Together they form a musical language that sustains the interaction of a variety of techniques, concepts and genres.
Resumo:
The goal of neonatal nutrition in the preterm infant is to achieve postnatal growth and body composition approximating that of a normal fetus of the same postmenstrual age and to obtain a functional outcome comparable to infants born at term. However, in clinical practice such a pattern is seldom achieved, with growth failure and altered body composition being extensively reported. The BabyGrow preterm nutrition study was a longitudinal, prospective, observational study designed to investigate nutrition and growth in 59 preterm infants following the implementation of evidence-based nutrition guidelines in the neonatal unit at Cork University Maternity Hospital. Nutrient delivery was precisely measured during the entire hospital stay and intakes were compared with current international recommendations. Barriers to nutrient delivery were identified across the phases of nutritional support i.e. exclusive parenteral nutrition and transition (establishment of enteral feeds) phases of nutrition and nutritional strategies to optimise nutrient delivery were proposed according to these phases. Growth was measured from birth up to 2 months corrected age and body composition was assessed in terms of fat mass and lean body mass by air displacement plethysmography (PEA POD) at 34 weeks gestation, term corrected age and 2 months corrected age. Anthropometric and body composition data in the preterm cohort were compared with a term reference group from the Cork BASELINE Birth Cohort Study (n=1070) at similar time intervals. The clinical and nutritional determinants of growth and body composition during the neonatal period were reported for the first time. These data have international relevance, informing authoritative agencies developing evidence-based practice guidelines for neonatal nutritional support. In the future, the nutritional management of preterm infants may need to be individualised to consider gestational age, birth weight as well as preterm morbidity.
Resumo:
Using C57BL/6J mice fed whey protein isolate (WPI) enriched high fat (HFD) or low-fat diets (LFD), this study tested the hypothesis that WPI directly impacts on adiposity by influencing lipid metabolism. WPI suppressed HFD-induced body fat and increased lean mass at 8 weeks of dietary challenge despite elevated plasma triacylglycerol (TAG) levels, suggesting reduced TAG storage. WPI reduced HFD-associated hypothalamic leptin and insulin receptor (IR) mRNA expression, and prevented HFD-associated reductions in adipose tissue IR and glucose transporter 4 expression. These effects were largely absent at 21 weeks of HFD feeding, however WPI increased lean mass and cause a trend towards decreased fat mass, with notable increased Lactobacillus and decreased Clostridium gut bacterial species. Increasing the protein to carbohydrate ratio enhanced the above effects, and shifted the gut microbiota composition away from the HFD group. Seven weeks of WPI intake with a LFD decreased insulin signalling gene expression in the adipose tissue in association with an increased fat accumulation. WPI reduced intestinal weight and length, suggesting a potential functional relationship between WPI, gastro-intestinal morphology and insulin related signalling in the adipose. Extending the study to 15 weeks, did not affect adipose fat weight, but decreased energy intake, weight gain and intestinal length. The functionality of protein sensing lysophosphatidic acid receptor 5 (LPA5) in 3T3-L1 pre-adipocytes was assessed. Over-expression of the receptor in 3T3-L1 pre-adipocytes provided a growth advantage to the cells and suppressed cellular differentiation into mature fat cells. In conclusion, the data demonstrates WPI impacts on adiposity by influencing lipid metabolism in a temporal manner, resulting possibly due to changes in lean mass, hypothalamic and adipose gene expression, gut microbiota and gastrointestinal morphology. The data also showed LPA5 is a novel candidate in regulating of preadipocyte growth and differentiation, and may mediate dietary protein effects on adipose tissue.