10 resultados para food processing

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quinoa (Chenopodium quinoa) is a seed crop native to the Andes, that can be used in a variety of food product in a similar manner to cereals. Unlike most plants, quinoa contains protein with a balanced amino acid profile. This makes it an interesting raw material for e.g. dairy product substitutes, a growing market in Europe and U.S. Quinoa can however have unpleasant off-flavours when processed into formulated products. One means of improving the palatability is seed germination. Also, the increased activities of hydrolytic enzymes can have a beneficial influence in food processing. In this thesis, the germination pattern of quinoa was studied, and the influence of quinoa malt was evaluated in a model product. Additionally, to explore its potential for dairy-type products, quinoa protein was isolated from an embryo-enriched milling fraction of non-germinated quinoa and tested for functional and gelation properties. Quinoa seeds imbibed water very rapidly, and most seeds showed radicle protrusion after 8-9 h. The α-amylase activity was very low, and started to increase only after 24 hours of germination in the starchy perisperm. Proteolytic activity was very high in dry ungerminated seeds, and increased slightly over 24 h. A significant fraction of this activity was located in the micropylar endosperm. The incorporation of germinated quinoa in gluten-free bread had no significant effect on the baking properties due to low α-amylase activity. Upon acidification with glucono-δ-lactone, quinoa milk formed a structured gel. The gelation behaviour was further studied using a quinoa protein isolate (QPI) extracted from an embryoenriched milling fraction. QPI required a heat-denaturation step to form gel structures. The heating pH influenced the properties drastically: heating at pH 10.5 led to a dramatic increase in solubility, emulsifying properties, and a formation of a fine-structured gel with a high storage modulus (G') when acidified. Heating at pH 8.5 varied very little from the unheated protein in terms of functional properties, and only formed a randomly aggregated coagulum with a low G'. Further study of changes over the course of heating showed that the mechanism of heat-denaturation and aggregation indeed varied largely depending on pH. The large difference in gelation behaviour may be related to the nature of aggregates formed during heating. To conclude, germination for increased enzyme activities may not be feasible, but the structure-forming properties of quinoa protein could possibly be exploited in dairy-type products.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated with bacterial biofilms in the food industry and summarizes the recent strategies explored to inhibit biofilm formation, with special focus on those targeting quorum sensing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study has considered the optimisation of granola breakfast cereal manufacturing processes by wet granulation and pneumatic conveying. Granola is an aggregated food product used as a breakfast cereal and in cereal bars. Processing of granola involves mixing the dry ingredients (typically oats, nuts, etc.) followed by the addition of a binder which can contain honey, water and/or oil. In this work, the design and operation of two parallel wet granulation processes to produce aggregate granola products were incorporated: a) a high shear mixing granulation process followed by drying/toasting in an oven. b) a continuous fluidised bed followed by drying/toasting in an oven. In high shear granulation the influence of process parameters on key granule aggregate quality attributes such as granule size distribution and textural properties of granola were investigated. The experimental results show that the impeller rotational speed is the single most important process parameter which influences granola physical and textural properties. After that binder addition rate and wet massing time also show significant impacts on granule properties. Increasing the impeller speed and wet massing time increases the median granule size while also presenting a positive correlation with density. The combination of high impeller speed and low binder addition rate resulted in granules with the highest levels of hardness and crispness. In the fluidised bed granulation process the effect of nozzle air pressure and binder spray rate on key aggregate quality attributes were studied. The experimental results show that a decrease in nozzle air pressure leads to larger in mean granule size. The combination of lowest nozzle air pressure and lowest binder spray rate results in granules with the highest levels of hardness and crispness. Overall, the high shear granulation process led to larger, denser, less porous and stronger (less likely to break) aggregates than the fluidised bed process. The study also examined the particle breakage of granola during pneumatic conveying produced by both the high shear granulation and the fluidised bed granulation process. Products were pneumatically conveyed in a purpose built conveying rig designed to mimic product conveying and packaging. Three different conveying rig configurations were employed; a straight pipe, a rig consisting two 45° bends and one with 90° bend. Particle breakage increases with applied pressure drop, and a 90° bend pipe results in more attrition for all conveying velocities relative to other pipe geometry. Additionally for the granules produced in the high shear granulator; those produced at the highest impeller speed, while being the largest also have the lowest levels of proportional breakage while smaller granules produced at the lowest impeller speed have the highest levels of breakage. This effect clearly shows the importance of shear history (during granule production) on breakage during subsequent processing. In terms of the fluidised bed granulation, there was no single operating parameter that was deemed to have a significant effect on breakage during subsequent conveying. Finally, a simple power law breakage model based on process input parameters was developed for both manufacturing processes. It was found suitable for predicting the breakage of granola breakfast cereal at various applied air velocities using a number of pipe configurations, taking into account shear histories.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of a new bioprocess requires several steps from initial concept to a practical and feasible application. Industrial applications of fungal pigments will depend on: (i) safety of consumption, (ii) stability of the pigments to the food processing conditions required by the products where they will be incorporated and (iii) high production yields so that production costs are reasonable. Of these requirements the first involves the highest research costs and the practical application of this type of processes may face several hurdles until final regulatory approval as a new food ingredient. Therefore, before going through expensive research to have them accepted as new products, the process potential should be assessed early on, and this brings forward pigment stability studies and process optimisation goals. Only ingredients that are usable in economically feasible conditions should progress to regulatory approval. This thesis covers these two aspects, stability and process optimisation, for a potential new ingredient; natural red colour, produced by microbial fermentation. The main goal was to design, optimise and scale-up the production process of red pigments by Penicillium purpurogenum GH2. The approach followed to reach this objective was first to establish that pigments produced by Penicillium purpurogenum GH2 are sufficiently stable under different processing conditions (thermal and non-thermal) that can be found in food and textile industries. Once defined that pigments were stable enough, the work progressed towards process optimisation, aiming for the highest productivity using submerged fermentation as production culture. Optimum production conditions defined at flask scale were used to scale up the pigment production process to a pilot reactor scale. Finally, the potential applications of the pigments were assessed. Based on this sequence of specific targets, the thesis was structured in six parts, containing a total of nine chapters. Engineering design of a bioprocess for the production of natural red colourants by submerged fermentation of the thermophilic fungus Penicillium purpurogenum GH2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As a by-product of the ‘information revolution’ which is currently unfolding, lifetimes of man (and indeed computer) hours are being allocated for the automated and intelligent interpretation of data. This is particularly true in medical and clinical settings, where research into machine-assisted diagnosis of physiological conditions gains momentum daily. Of the conditions which have been addressed, however, automated classification of allergy has not been investigated, even though the numbers of allergic persons are rising, and undiagnosed allergies are most likely to elicit fatal consequences. On the basis of the observations of allergists who conduct oral food challenges (OFCs), activity-based analyses of allergy tests were performed. Algorithms were investigated and validated by a pilot study which verified that accelerometer-based inquiry of human movements is particularly well-suited for objective appraisal of activity. However, when these analyses were applied to OFCs, accelerometer-based investigations were found to provide very poor separation between allergic and non-allergic persons, and it was concluded that the avenues explored in this thesis are inadequate for the classification of allergy. Heart rate variability (HRV) analysis is known to provide very significant diagnostic information for many conditions. Owing to this, electrocardiograms (ECGs) were recorded during OFCs for the purpose of assessing the effect that allergy induces on HRV features. It was found that with appropriate analysis, excellent separation between allergic and nonallergic subjects can be obtained. These results were, however, obtained with manual QRS annotations, and these are not a viable methodology for real-time diagnostic applications. Even so, this was the first work which has categorically correlated changes in HRV features to the onset of allergic events, and manual annotations yield undeniable affirmation of this. Fostered by the successful results which were obtained with manual classifications, automatic QRS detection algorithms were investigated to facilitate the fully automated classification of allergy. The results which were obtained by this process are very promising. Most importantly, the work that is presented in this thesis did not obtain any false positive classifications. This is a most desirable result for OFC classification, as it allows complete confidence to be attributed to classifications of allergy. Furthermore, these results could be particularly advantageous in clinical settings, as machine-based classification can detect the onset of allergy which can allow for early termination of OFCs. Consequently, machine-based monitoring of OFCs has in this work been shown to possess the capacity to significantly and safely advance the current state of clinical art of allergy diagnosis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this PhD study, mathematical modelling and optimisation of granola production has been carried out. Granola is an aggregated food product used in breakfast cereals and cereal bars. It is a baked crispy food product typically incorporating oats, other cereals and nuts bound together with a binder, such as honey, water and oil, to form a structured unit aggregate. In this work, the design and operation of two parallel processes to produce aggregate granola products were incorporated: i) a high shear mixing granulation stage (in a designated granulator) followed by drying/toasting in an oven. ii) a continuous fluidised bed followed by drying/toasting in an oven. In addition, the particle breakage of granola during pneumatic conveying produced by both a high shear granulator (HSG) and fluidised bed granulator (FBG) process were examined. Products were pneumatically conveyed in a purpose built conveying rig designed to mimic product conveying and packaging. Three different conveying rig configurations were employed; a straight pipe, a rig consisting two 45° bends and one with 90° bend. It was observed that the least amount of breakage occurred in the straight pipe while the most breakage occurred at 90° bend pipe. Moreover, lower levels of breakage were observed in two 45° bend pipe than the 90° bend vi pipe configuration. In general, increasing the impact angle increases the degree of breakage. Additionally for the granules produced in the HSG, those produced at 300 rpm have the lowest breakage rates while the granules produced at 150 rpm have the highest breakage rates. This effect clearly the importance of shear history (during granule production) on breakage rates during subsequent processing. In terms of the FBG there was no single operating parameter that was deemed to have a significant effect on breakage during subsequent conveying. A population balance model was developed to analyse the particle breakage occurring during pneumatic conveying. The population balance equations that govern this breakage process are solved using discretization. The Markov chain method was used for the solution of PBEs for this process. This study found that increasing the air velocity (by increasing the air pressure to the rig), results in increased breakage among granola aggregates. Furthermore, the analysis carried out in this work provides that a greater degree of breakage of granola aggregates occur in line with an increase in bend angle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the European Union under the Common Agricultural Policy (CAP) milk production was restricted by milk quotas since 1984. However, due to recent changes in the Common Agricultural Policy (CAP), milk quotas will be abolished by 2015. Therefore, the European dairy sector will soon face an opportunity, for the first time in a generation, to expand. Numerous studies have shown that milk production in Ireland will increase significantly post quotas (Laepple and Hennessy (2010), Donnellan and Hennessy (2007) and Lips and Reider (2005)). The research in this thesis explored milk transport and dairy product processing in the Irish dairy processing sector in the context of milk quota removal and expansion by 2020. In this study a national milk transport model was developed for the Irish dairy industry, the model was used to examine different efficiency factors in milk transport and to estimate milk transport costs post milk quota abolition. Secondly, the impact of different milk supply profiles on milk transport costs was investigated using the milk transport model. Current processing capacity in Ireland was compared against future supply, it was concluded that additional milk processing capacity would not be sufficient to process the additional milk. Thirdly, the milk transport model was used to identify the least cost locations (based on transport costs) to process the additional milk supply in 2020. Finally, an optimisation model was developed to identify the optimum configuration for the Irish dairy processing sector in 2020 taking cognisance of increasing transport costs and decreasing processing costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This qualitative research expands understanding of how information about a range of Novel Food Technologies (NFTs) is used and assimilated, and the implications of this on the evolution of attitudes and acceptance. This work enhances theoretical and applied understanding of citizens’ evaluative processes around these technologies. The approach applied involved observations of interactive exchanges between citizens and information providers (i.e. food scientists), during which they discussed a specific technology. This flexible, yet structured, approach revealed how individuals construct meaning around information about specific NFTs. A rich dataset of 42 ‘deliberate discourse’ and 42 postdiscourse transcripts was collected. Data analysis encompassed three stages: an initial descriptive account of the complete dataset based on the top-down bottom-up (TDBU) model of attitude formation, followed by inductive and deductive thematic analysis across the selected technology groups. The hybrid thematic analysis undertaken identified a Conceptual Model, which represents a holistic perspective on the influences and associated features directing ‘sense-making’ and ultimate evaluations around the technology clusters. How individuals make sense of these technologies is shaped by: their beliefs, values and personal characteristics; their perceptions of power and control over the application of the technology; and, the assumed relevance of the technology and its applications within different contexts. These influences form the frame for the creation of sense-making around the technologies. Internal negotiations between these influences are evident and evaluations are based on the relative importance of each influence to the individual, which tend to contribute to attitude ambivalence and instability. The findings indicate the processes of forming and changing attitudes towards these technologies are: complex; dependent on characteristics of the individual, technology, application and product; and, impacted by the nature and forms of information provided. Challenges are faced in engaging with the public about these technologies, as levels of knowledge, understanding and interest vary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this thesis were to (i) study the effect of increasing protein concentration in milk protein concentrate (MPC) powders on surface composition and sorption properties; (ii) examine the effect of increasing protein content on the rehydration properties of MPC; (iii) study the physicochemical properties of spraydried emulsion-containing powders having different water and oil contents; (iv) analyse the effect of protein type on water sorption and diffusivity properties in a protein/lactose dispersion, and; (v) characterise lactose crystallisation and emulsion stability of model infant formula containing intact or hydrolysed whey proteins. Surface composition of MPC powders (protein contents 35 - 86 g / 100 g) indicated that fat and protein were preferentially located on the surface of powders. Low protein powder (35 g / 100 g) exhibited lactose crystallisation, whereas powders with higher protein contents did not, due to their high protein: lactose ratio. Insolubility was evident in high protein MPCs and was primarily related to insolubility of the casein fraction. High temperature (50 °C) was required for dissolution of high protein MPCs (protein content > 60 g / 100 g). The effect of different oil types and spray-drying outlet temperature on the physicochemical properties of the resultant fat-filled powders was investigated and showed that increasing outlet temperature reduced water content, water activity and tapped bulk density, irrespective of oil type, and increased solvent-extractable free fat for all oil types and onset of glass transition (Tg) and crystallisation (Tcr) temperature. Powder dispersions of protein/lactose (0.21:1), containing either intact or hydrolysed whey protein (12 % degree of hydrolysis; DH), were spray-dried at pilot scale. Moisture sorption analysis at 25 °C showed that dispersions containing intact whey protein exhibited lactose crystallisation at a lower relative humidity (RH). Dispersions containing hydrolysed whey protein had significantly higher (P < 0.05) water diffusivity. Finally, a spray-dried model infant formula was produced containing hydrolysed or intact whey as the protein with sunflower oil as the fat source. Reconstituted, hydrolysed formula had a significantly (P < 0.05) higher fat globule size and lower emulsion stability than intact formula. Lactose crystallisation in powders occurred at higher RH for hydrolysed formula. In conclusion, this research has shown the effect of altering the protein type, protein composition, and oil type on the surface composition and physical properties of different dairy powders, and how these variations greatly affect their rehydration characteristics and storage stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Honey is rich in sugar content and dominated by fructose and glucose that make honey prone to crystallize during storage. Due to honey composition, the anhydrous glass transition temperature of honey is very low that makes honey difficult to dry alone and drying aid or filler is needed to dry honey. Maltodextrin is a common drying aid material used in drying of sugar-rich food. The present study aims to study the processing of honey powder by vacuum drying method and the impact of drying process and formulation on the stability of honey powder. To achieve the objectives, the series of experiments were done: investigating of maltodextrin DE 10 properties, studying the effect of drying temperature, total solid concentration, DE value, maltodextrin concentration and anti-caking agent on honey powder processing and stability. Maltodextrin provide stable glass compared to lower molecular weight sugars. Dynamic Dew Point Isotherm (DDI) data could be used to determine amorphous content of a system. The area under the first derivative curve from DDI curve is equal to the amount of water needed by amorphous material to crystallize. The drying temperature affected the amorphous content of vacuum-dried honey powder. The higher temperature seemed to result in honey powder with more amorphous component. The ratio of maltodextrin affected more significantly the stability of honey powder compared to the treatments of total solids concentration, DE value and drying temperature. The critical water activity of honey powder was lower than water activity of the equilibrium water content corresponding to BET monolayer water content. Addition of anti-caking agent increased stability and flow-ability of honey powder. Addition of Calcium stearate could inhibit collapse of the honey powder during storage.