7 resultados para flip-chip
em CORA - Cork Open Research Archive - University College Cork - Ireland
A simulation-based design method to transfer surface mount RF system to flip-chip die implementation
Resumo:
The flip-chip technology is a high chip density solution to meet the demand for very large scale integration design. For wireless sensor node or some similar RF applications, due to the growing requirements for the wearable and implantable implementations, flip-chip appears to be a leading technology to realize the integration and miniaturization. In this paper, flip-chip is considered as part of the whole system to affect the RF performance. A simulation based design is presented to transfer the surface mount PCB board to the flip-chip die package for the RF applications. Models are built by Q3D Extractor to extract the equivalent circuit based on the parasitic parameters of the interconnections, for both bare die and wire-bonding technologies. All the parameters and the PCB layout and stack-up are then modeled in the essential parts' design of the flip-chip RF circuit. By implementing simulation and optimization, a flip-chip package is re-designed by the parameters given by simulation sweep. Experimental results fit the simulation well for the comparison between pre-optimization and post-optimization of the bare die package's return loss performance. This design method could generally be used to transfer any surface mount PCB to flip-chip package for the RF systems or to predict the RF specifications of a RF system using the flip-chip technology.
Resumo:
Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic sensing capsules are an example of these. In none of the diagnostic sensing capsules, is the sensor’s first level packaging achieved via Flip Chip Over Hole (FCOH) method using Anisotropic Conductive Adhesive (ACA). In a capsule application with direct access sensor (DAS), ACA not only provides the electrical interconnection but simultaneously seals the interconnect area and the underlying electronics. The development showed that the ACA FCOH was a viable option for the DAS interconnection. Adequate adhesive formed a strong joint that withstood a shear stress of 120N/mm2 and a compressive stress of 6N required to secure the final sensor assembly in place before encapsulation. Electrical characterization of the ACA joint in a fluid environment showed that the ACA was saturated with moisture and that the ions in the solution actively contributed to the leakage current, characterized by the varying rate of change of conductance. Long term hygrothermal aging of the ACA joint showed that a thermal strain of 0.004 and a hygroscopic strain of 0.0052 were present and resulted in a fatigue like process. In-vitro tests showed that high temperature and acidity had a deleterious effect of the ACA and its joint. It also showed that the ACA contact joints positioned at around or over 1mm would survive the gastrointestinal (GI) fluids and would be able to provide a reliable contact during the entire 72hr of the GI transit time. A final capsule demonstrator was achieved by successfully integrating the DAS, the battery and the final foldable circuitry into a glycerine capsule. Final capsule soak tests suggested that the silicone encapsulated system could survive the 72hr gut transition.
Resumo:
The objective of this paper is to investigate the effect of the pad size ratio between the chip and board end of a solder joint on the shape of that solder joint in combination with the solder volume available. The shape of the solder joint is correlated to its reliability and thus of importance. For low density chip bond pad applications Flip Chip (FC) manufacturing costs can be kept down by using larger size board pads suitable for solder application. By using “Surface Evolver” software package the solder joint shapes associated with different size/shape solder preforms and chip/board pad ratios are predicted. In this case a so called Flip-Chip Over Hole (FCOH) assembly format has been used. Assembly trials involved the deposition of lead-free 99.3Sn0.7Cu solder on the board side, followed by reflow, an underfill process and back die encapsulation. During the assembly work pad off-sets occurred that have been taken into account for the Surface Evolver solder joint shape prediction and accurately matched the real assembly. Overall, good correlation was found between the simulated solder joint shape and the actual fabricated solder joint shapes. Solder preforms were found to exhibit better control over the solder volume. Reflow simulation of commercially available solder preform volumes suggests that for a fixed stand-off height and chip-board pad ratio, the solder volume value and the surface tension determines the shape of the joint.
Resumo:
A comparison study was carried out between a wireless sensor node with a bare die flip-chip mounted and its reference board with a BGA packaged transceiver chip. The main focus is the return loss (S parameter S11) at the antenna connector, which was highly depended on the impedance mismatch. Modeling including the different interconnect technologies, substrate properties and passive components, was performed to simulate the system in Ansoft Designer software. Statistical methods, such as the use of standard derivation and regression, were applied to the RF performance analysis, to see the impacts of the different parameters on the return loss. Extreme value search, following on the previous analysis, can provide the parameters' values for the minimum return loss. Measurements fit the analysis and simulation well and showed a great improvement of the return loss from -5dB to -25dB for the target wireless sensor node.
Resumo:
Solar Energy is a clean and abundant energy source that can help reduce reliance on fossil fuels around which questions still persist about their contribution to climate and long-term availability. Monolithic triple-junction solar cells are currently the state of the art photovoltaic devices with champion cell efficiencies exceeding 40%, but their ultimate efficiency is restricted by the current-matching constraint of series-connected cells. The objective of this thesis was to investigate the use of solar cells with lattice constants equal to InP in order to reduce the constraint of current matching in multi-junction solar cells. This was addressed by two approaches: Firstly, the formation of mechanically stacked solar cells (MSSC) was investigated through the addition of separate connections to individual cells that make up a multi-junction device. An electrical and optical modelling approach identified separately connected InGaAs bottom cells stacked under dual-junction GaAs based top cells as a route to high efficiency. An InGaAs solar cell was fabricated on an InP substrate with a measured 1-Sun conversion efficiency of 9.3%. A comparative study of adhesives found benzocyclobutene to be the most suitable for bonding component cells in a mechanically stacked configuration owing to its higher thermal conductivity and refractive index when compared to other candidate adhesives. A flip-chip process was developed to bond single-junction GaAs and InGaAs cells with a measured 4-terminal MSSC efficiency of 25.2% under 1-Sun conditions. Additionally, a novel InAlAs solar cell was identified, which can be used to provide an alternative to the well established GaAs solar cell. As wide bandgap InAlAs solar cells have not been extensively investigated for use in photovoltaics, single-junction cells were fabricated and their properties relevant to PV operation analysed. Minority carrier diffusion lengths in the micrometre range were extracted, confirming InAlAs as a suitable material for use in III-V solar cells, and a 1-Sun conversion efficiency of 6.6% measured for cells with 800 nm thick absorber layers. Given the cost and small diameter of commercially available InP wafers, InGaAs and InAlAs solar cells were fabricated on alternative substrates, namely GaAs. As a first demonstration the lattice constant of a GaAs substrate was graded to InP using an InxGa1-xAs metamorphic buffer layer onto which cells were grown. This was the first demonstration of an InAlAs solar cell on an alternative substrate and an initial step towards fabricating these cells on Si. The results presented offer a route to developing multi-junction solar cell devices based on the InP lattice parameter, thus extending the range of available bandgaps for high efficiency cells.
Resumo:
Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic capsules are an example of this. In this paper, a diagnostic capsule technology is described based on direct-access sensing of the Gastro Intestinal (GI) fluids throughout the GI tract. The objective of this paper is two-fold: i) develop a packaging method for a direct access sensor, ii) develop an encapsulation method to protect the system electronics. The integrity of the interconnection after sensor packaging and encapsulation is correlated to its reliability and thus of importance. The zero level packaging of the sensor was achieved by using a so called Flip Chip Over Hole (FCOH) method. This allowed the fluidic sensing media to interface with the sensor, while the rest of the chip including the electrical connections can be insulated effectively. Initial tests using Anisotropic Conductive Adhesive (ACA) interconnect for the FCOH demonstrated good electrical connections and functionality of the sensor chip. Also a preliminary encapsulation trial of the flip chipped sensor on a flexible test substrate has been carried out and showed that silicone encapsulation of the system is a viable option.
Resumo:
In this paper, a prototype of miniaturized, low power, bi-directional wireless sensor node for wireless sensor networks (WSN) was designed for doors and windows building monitoring. The capacitive pressure sensors have been developed particularly for such application, where packaging size and minimization of the power requirements of the sensors are the major drivers. The capacitive pressure sensors have been fabricated using a 2.4 mum thick strain compensated heavily boron doped SiGeB diaphragm is presented. In order to integrate the sensors with the wireless module, the sensor dice was wire bonded onto TO package using chip on board (COB) technology. The telemetric link and its capabilities to send information for longer range have been significantly improved using a new design and optimization process. The simulation tool employed for this work was the Designerreg tool from Ansoft Corporation.