13 resultados para first principles

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A first-principles method is applied to find the intra and intervalley n-type carrier scattering rates for substitutional carbon in silicon. The method builds on a previously developed first-principles approach with the introduction of an interpolation technique to determine the intravalley scattering rates. Intravalley scattering is found to be the dominant alloy scattering process in Si1-xCx, followed by g-type intervalley scattering. Mobility calculations show that alloy scattering due to substitutional C alone cannot account for the experimentally observed degradation of the mobility. We show that the incorporation of additional charged impurity scattering due to electrically active interstitial C complexes models this residual resistivity well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-principles electronic structure methods are used to predict the mobility of n-type carrier scattering in strained SiGe. We consider the effects of strain on the electron-phonon deformation potentials and the alloy scattering parameters. We calculate the electron-phonon matrix elements and fit them up to second order in strain. We find, as expected, that the main effect of strain on mobility comes from the breaking of the degeneracy of the six Δ and L valleys, and the choice of transport direction. The non-linear effects on the electron-phonon coupling of the Δ valley due to shear strain are found to reduce the mobility of Si-like SiGe by 50% per % strain. We find increases in mobility between 2 and 11 times that of unstrained SiGe for certain fixed Ge compositions, which should enhance the thermoelectric figure of merit in the same order, and could be important for piezoresistive applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-principles electronic structure methods are used to find the rates of inelastic intravalley and intervalley n-type carrier scattering in Si1-xGex alloys. Scattering parameters for all relevant Delta and L intra- and intervalley scattering are calculated. The short-wavelength acoustic and the optical phonon modes in the alloy are computed using the random mass approximation, with interatomic forces calculated in the virtual crystal approximation using density functional perturbation theory. Optical phonon and intervalley scattering matrix elements are calculated from these modes of the disordered alloy. It is found that alloy disorder has only a small effect on the overall inelastic intervalley scattering rate at room temperature. Intravalley acoustic scattering rates are calculated within the deformation potential approximation. The acoustic deformation potentials are found directly and the range of validity of the deformation potential approximation verified in long-wavelength frozen phonon calculations. Details of the calculation of elastic alloy scattering rates presented in an earlier paper are also given. Elastic alloy disorder scattering is found to dominate over inelastic scattering, except for almost pure silicon (x approximate to 0) or almost pure germanium (x approximate to 1), where acoustic phonon scattering is predominant. The n-type carrier mobility, calculated from the total (elastic plus inelastic) scattering rate, using the Boltzmann transport equation in the relaxation time approximation, is in excellent agreement with experiments on bulk, unstrained alloys..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p-type carrier scattering rate due to alloy disorder in Si1-xGex alloys is obtained from first principles. The required alloy scattering matrix elements are calculated from the energy splitting of the valence bands, which arise when one average host atom is replaced by a Ge or Si atom in supercells containing up to 128 atoms. Alloy scattering within the valence bands is found to be characterized by a single scattering parameter. The hole mobility is calculated from the scattering rate using the Boltzmann transport equation in the relaxation time approximation. The results are in good agreement with experiments on bulk, unstrained alloys..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-principles electronic structure methods are used to find the rates of intravalley and intervalley n-type carrier scattering due to alloy disorder in Si1-xGex alloys. The required alloy scattering matrix elements are calculated from the energy splitting of nearly degenerate Bloch states which arises when one average host atom is replaced by a Ge or Si atom in supercells containing up to 128 atoms. Scattering parameters for all relevant Delta and L intravalley and intervalley alloy scattering are calculated. Atomic relaxation is found to have a substantial effect on the scattering parameters. f-type intervalley scattering between Delta valleys is found to be comparable to other scattering channels. The n-type carrier mobility, calculated from the scattering rate using the Boltzmann transport equation in the relaxation time approximation, is in excellent agreement with experiments on bulk, unstrained alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we use a model of hydrogenated amorphous silicon generated from molecular dynamics with density functional theory calculations to examine how the atomic geometry and the optical and mobility gaps are influenced by mild hydrogen oversaturation. The optical and mobility gaps show a volcano curve as the hydrogen content varies from undersaturation to mild oversaturation, with largest gaps obtained at the saturation hydrogen concentration. At the same time, mid-gap states associated with dangling bonds and strained Si-Si bonds disappear at saturation but reappear at mild oversaturation, which is consistent with the evolution of optical gap. The distribution of Si-Si bond distances provides the key to the change in electronic properties. In the undersaturation regime, the new electronic states in the gap arise from the presence of dangling bonds and strained Si-Si bonds, which are longer than the equilibrium Si-Si distance. Increasing hydrogen concentration up to saturation reduces the strained bonds and removes dangling bonds. In the case of mild oversaturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structure shows that the extra hydrogen atoms form a bridge between neighbouring silicon atoms, thus increasing the Si-Si distance and increasing disorder in the sample.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use first-principles electronic structure methods to show that the piezoresistive strain gauge factor of single-crystalline bulk n-type silicon-germanium alloys at carefully controlled composition can reach values of G = 500, three times larger than that of silicon, the most sensitive such material used in industry today. At cryogenic temperatures of 4 K we find gauge factors of G = 135 000, 13 times larger than that observed in Si whiskers. The improved piezoresistance is achieved by tuning the scattering of carriers between different (Delta and L) conduction band valleys by controlling the alloy composition and strain configuration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

First-principles electronic structure methods are used to predict the rate of n-type carrier scattering due to phonons in highly-strained Ge. We show that strains achievable in nanoscale structures, where Ge becomes a direct bandgap semiconductor, cause the phonon-limited mobility to be enhanced by hundreds of times that of unstrained Ge, and over a thousand times that of Si. This makes highly tensile strained Ge a most promising material for the construction of channels in CMOS devices, as well as for Si-based photonic applications. Biaxial (001) strain achieves mobility enhancements of 100 to 1000 with strains over 2%. Low temperature mobility can be increased by even larger factors. Second order terms in the deformation potential of the Gamma valley are found to be important in this mobility enhancement. Although they are modified by shifts in the conduction band valleys, which are caused by carrier quantum confinement, these mobility enhancements persist in strained nanostructures down to sizes of 20 nm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The large intrinsic bandgap of NiO hinders its potential application as a photocatalyst under visible-light irradiation. In this study, we have performed first-principles screened exchange hybrid density functional theory with the HSE06 functional calculations of N- and C-doped NiO to investigate the effect of doping on the electronic structure of NiO. C-doping at an oxygen site induces gap states due to the dopant, the positions of which suggest that the top of the valence band is made up primarily of C 2p-derived states with some Ni 3d contributions, and the lowest-energy empty state is in the middle of the gap. This leads to an effective bandgap of 1.7 eV, which is of potential interest for photocatalytic applications. N-doping induces comparatively little dopant-Ni 3d interactions, but results in similar positions of dopant-induced states, i.e., the top of the valence band is made up of dopant 2p states and the lowest unoccupied state is the empty gap state derived from the dopant, leading to bandgap narrowing. With the hybrid density functional theory (DFT) results available, we discuss issues with the DFT corrected for on-site Coulomb description of these systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modification of TiO2 with metal oxide nanoclusters such as FeOx, NiOx has been shown to be a promising approach to the design of new photocatalysts with visible light absorption and improved electron–hole separation. To study further the factors that determine the photocatalytic properties of structures of this type, we present in this paper a first principles density functional theory (DFT) investigation of TiO2 rutile(110) and anatase(001) modified with PbO and PbO2 nanoclusters, with Pb2+ and Pb4+ oxidation states. This allows us to unravel the effect of the Pb oxidation state on the photocatalytic properties of PbOx-modified TiO2. The nanoclusters adsorb strongly at all TiO2 surfaces, creating new Pb–O and Ti–O interfacial bonds. Modification with PbO and PbO2 nanoclusters introduces new states in the original band gap of rutile and anatase. However the oxidation state of Pb has a dramatic impact on the nature of the modifications of the band edges of TiO2 and on the electron–hole separation mechanism. PbO nanocluster modification leads to an upwards shift of the valence band which reduces the band gap and upon photoexcitation results in hole localisation on the PbO nanocluster and electron localisation on the surface. By contrast, for PbO2 nanocluster modification the hole will be localised on the TiO2 surface and the electron on the nanocluster, thus giving rise to two different band gap reduction and electron–hole separation mechanisms. We find no crystal structure sensitivity, with both rutile and anatase surfaces showing similar properties upon modification with PbOx. In summary the photocatalytic properties of heterostructures of TiO2 with oxide nanoclusters can be tuned by oxidation state of the modifying metal oxide, with the possibility of a reduced band gap causing visible light activation and a reduction in charge carrier recombination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cu(acac)2 is chemisorbed on TiO2 particles [P-25 (anatase/rutile = 4/1 w/w), Degussa] via coordination by surface Ti–OH groups without elimination of the acac ligand. Post-heating of the Cu(acac)2-adsorbed TiO2 at 773 K yields molecular scale copper(II) oxide clusters on the surface (CuO/TiO2). The copper loading amount (Γ/Cu ions nm–2) is controlled in a wide range by the Cu(acac)2 concentration and the chemisorption–calcination cycle number. Valence band (VB) X-ray photoelectron and photoluminescence spectroscopy indicated that the VB maximum of TiO2 rises up with increasing Γ, while vacant midgap levels are generated. The surface modification gives rise to visible-light activity and concomitant significant increase in UV-light activity for the degradation of 2-naphthol and p-cresol. Prolonging irradiation time leads to the decomposition to CO2, which increases in proportion to irradiation time. The photocatalytic activity strongly depends on the loading, Γ, with an optimum value of Γ for the photocatalytic activity. Electrochemical measurements suggest that the surface CuO clusters promote the reduction of adsorbed O2. First principles density functional theory simulations clearly show that, at Γ < 1, unoccupied Cu 3d levels are generated in the midgap region, and at Γ > 1, the VB maximum rises and the unoccupied Cu 3d levels move to the conduction band minimum of TiO2. These results suggest that visible-light excitation of CuO/TiO2 causes the bulk-to-surface interfacial electron transfer at low coverage and the surface-to-bulk interfacial electron transfer at high coverage. We conclude that the surface CuO clusters enhance the separation of photogenerated charge carriers by the interfacial electron transfer and the subsequent reduction of adsorbed O2 to achieve the compatibility of high levels of visible and UV-light activities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicon carbide (SiC) is a promising material for electronics due to its hardness, and ability to carry high currents and high operating temperature. SiC films are currently deposited using chemical vapor deposition (CVD) at high temperatures 1500–1600 °C. However, there is a need to deposit SiC-based films on the surface of high aspect ratio features at low temperatures. One of the most precise thin film deposition techniques on high-aspect-ratio surfaces that operates at low temperatures is atomic layer deposition (ALD). However, there are currently no known methods for ALD of SiC. Herein, the authors present a first-principles thermodynamic analysis so as to screen different precursor combinations for SiC thin films. The authors do this by calculating the Gibbs energy ΔGΔG of the reaction using density functional theory and including the effects of pressure and temperature. This theoretical model was validated for existing chemical reactions in CVD of SiC at 1000 °C. The precursors disilane (Si2H6), silane (SiH4), or monochlorosilane (SiH3Cl) with ethyne (C2H2), carbontetrachloride (CCl4), or trichloromethane (CHCl3) were predicted to be the most promising for ALD of SiC at 400 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The observation chart is for many health professionals (HPs) the primary source of objective information relating to the health of a patient. Information Systems (IS) research has demonstrated the positive impact of good interface design on decision making and it is logical that good observation chart design can positively impact healthcare decision making. Despite the potential for good observation chart design, there is a paucity of observation chart design literature, with the primary source of literature leveraging Human Computer Interaction (HCI) literature to design better charts. While this approach has been successful, this design approach introduces a gap between understanding of the tasks performed by HPs when using charts and the design features implemented in the chart. Good IS allow for the collection and manipulation of data so that it can be presented in a timely manner that support specific tasks. Good interface design should therefore consider the specific tasks being performed prior to designing the interface. This research adopts a Design Science Research (DSR) approach to formalise a framework of design principles that incorporates knowledge of the tasks performed by HPs when using observation charts and knowledge pertaining to visual representations of data and semiology of graphics. This research is presented in three phases, the initial two phases seek to discover and formalise design knowledge embedded in two situated observation charts: the paper-based NEWS chart developed by the Health Service Executive in Ireland and the electronically generated eNEWS chart developed by the Health Information Systems Research Centre in University College Cork. A comparative evaluation of each chart is also presented in the respective phases. Throughout each of these phases, tentative versions of a design framework for electronic vital sign observation charts are presented, with each subsequent iteration of the framework (versions Alpha, Beta, V0.1 and V1.0) representing a refinement of the design knowledge. The design framework will be named the framework for the Retrospective Evaluation of Vital Sign Information from Early Warning Systems (REVIEWS). Phase 3 of the research presents the deductive process for designing and implementing V0.1 of the framework, with evaluation of the instantiation allowing for the final iteration V1.0 of the framework. This study makes a number of contributions to academic research. First the research demonstrates that the cognitive tasks performed by nurses during clinical reasoning can be supported through good observation chart design. Secondly the research establishes the utility of electronic vital sign observation charts in terms of supporting the cognitive tasks performed by nurses during clinical reasoning. Third the framework for REVIEWS represents a comprehensive set of design principles which if applied to chart design will improve the usefulness of the chart in terms of supporting clinical reasoning. Fourth the electronic observation chart that emerges from this research is demonstrated to be significantly more useful than previously designed charts and represents a significant contribution to practice. Finally the research presents a research design that employs a combination of inductive and deductive design activities to iterate on the design of situated artefacts.