4 resultados para facile

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile spin cast route was developed to convert perpendicularly aligned nanorod assemblies of cadmium chalcogenides into their silver and copper analogues. The assemblies are rapidly cation exchanged without affecting either the individual rod dimensions or collective superlattice order extending over several multilayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents several routes towards achieving artificial opal templates by colloidal self-assembly of polystyrene (PS) or poly(methyl methacrylate) (PMMA) spheres and the use of these template for the fabrication of V2O5 inverse opals as cathode materials for lithium ion battery applications. First, through the manipulation of different experimental factors, several methods of affecting or directing opal growth towards realizing different structures, improving order and/or achieving faster formation on a variety of substrates are presented. The addition of the surfactant sodium dodecyl sulphate (SDS) at a concentration above the critical micelle concentration for SDS to a 5 wt% solution of PMMA spheres before dip-coating is presented as a method of achieving ordered 2D PhC monolayers on hydrophobic Au-coated silicon substrates at fast and slow rates of withdrawal. The effect that the degree of hydrophilicity of glass substrates has on the ordering of PMMA spheres is next investigated for a slow rate of withdrawal under noise agitation. Heating of the colloidal solution is also presented as a means of affecting order and thickness of opal deposits formed using fast rate dip coating. E-beam patterned substrates are shown as a means of altering the thermodynamically favoured FCC ordering of polystyrene spheres (PS) when dip coated at slow rate. Facile routes toward the synthesis of ordered V2O5 inverse opals are presented with direct infiltration of polymer sphere templates using liquid precursor. The use of different opal templates, both 2D and 3D partially ordered templates, is compared and the composition and arrangement of the subsequent IO structures post infiltration and calcination for various procedures is characterised. V2O5 IOs are also synthesised by electrodeposition from an aqueous VOSO4 solution at constant voltage. Electrochemical characterisation of these structures as cathode material for Li-ion batteries is assessed in a half cell arrangement for samples deposited on stainless steel foil substrates. Improved rate capabilities are demonstrated for these materials over bulk V2O5, with the improvement attributed to the shorter Li ion diffusion distances and increased electrolyte infiltration provided by the IO structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germanium was of great interest in the 1950’s when it was used for the first transistor device. However, due to the water soluble and unstable oxide it was surpassed by silicon. Today, as device dimensions are shrinking the silicon oxide is no longer suitable due to gate leakage and other low-κ dielectrics such as Al2O3 and HfO2 are being used. Germanium (Ge) is a promising material to replace or integrate with silicon (Si) to continue the trend of Moore’s law. Germanium has better intrinsic mobilities than silicon and is also silicon fab compatible so it would be an ideal material choice to integrate into silicon-based technologies. The progression towards nanoelectronics requires a lot of in depth studies. Dynamic TEM studies allow observations of reactions to allow a better understanding of mechanisms and how an external stimulus may affect a material/structure. This thesis details in situ TEM experiments to investigate some essential processes for germanium nanowire (NW) integration into nanoelectronic devices; i.e. doping and Ohmic contact formation. Chapter 1 reviews recent advances in dynamic TEM studies on semiconductor (namely silicon and germanium) nanostructures. The areas included are nanowire/crystal growth, germanide/silicide formation, irradiation, electrical biasing, batteries and strain. Chapter 2 details the study of ion irradiation and the damage incurred in germanium nanowires. An experimental set-up is described to allow for concurrent observation in the TEM of a nanowire following sequential ion implantation steps. Grown nanowires were deposited on a FIB labelled SiN membrane grid which facilitated HRTEM imaging and facile navigation to a specific nanowire. Cross sections of irradiated nanowires were also performed to evaluate the damage across the nanowire diameter. Experiments were conducted at 30 kV and 5 kV ion energies to study the effect of beam energy on nanowires of varied diameters. The results on nanowires were also compared to the damage profile in bulk germanium with both 30 kV and 5 kV ion beam energies. Chapter 3 extends the work from chapter 2 whereby nanowires are annealed post ion irradiation. In situ thermal annealing experiments were conducted to observe the recrystallization of the nanowires. A method to promote solid phase epitaxial growth is investigated by irradiating only small areas of a nanowire to maintain a seed from which the epitaxial growth can initiate. It was also found that strain in the nanowire greatly effects defect formation and random nucleation and growth. To obtain full recovery of the crystal structure of a nanowire, a stable support which reduces strain in the nanowire is essential as well as containing a seed from which solid phase epitaxial growth can initiate. Chapter 4 details the study of nickel germanide formation in germanium nanostructures. Rows of EBL (electron beam lithography) defined Ni-capped germanium nanopillars were extracted in FIB cross sections and annealed in situ to observe the germanide formation. Chapter 5 summarizes the key conclusions of each chapter and discusses an outlook on the future of germanium nanowire studies to facilitate their future incorporation into nanodevices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A binder-free cobalt phosphate hydrate (Co3(PO4)2·8H2O) multilayer nano/microflake structure is synthesized on nickel foam (NF) via a facile hydrothermal process. Four different concentrations (2.5, 5, 10, and 20 mM) of Co2+ and PO4–3 were used to obtain different mass loading of cobalt phosphate on the nickel foam. The Co3(PO4)2·8H2O modified NF electrode (2.5 mM) shows a maximum specific capacity of 868.3 C g–1 (capacitance of 1578.7 F g–1) at a current density of 5 mA cm–2 and remains as high as 566.3 C g–1 (1029.5 F g–1) at 50 mA cm–2 in 1 M NaOH. A supercapattery assembled using Co3(PO4)2·8H2O/NF as the positive electrode and activated carbon/NF as the negative electrode delivers a gravimetric capacitance of 111.2 F g–1 (volumetric capacitance of 4.44 F cm–3). Furthermore, the device offers a high specific energy of 29.29 Wh kg–1 (energy density of 1.17 mWh cm–3) and a specific power of 4687 W kg–1 (power density of 187.5 mW cm–3).