2 resultados para existentially touched
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The objective of this thesis work is to develop methods for forming and interfacing nanocrystal-molecule nanostructures in order to explore their electrical transport properties in various controlled environments. This work demonstrates the potential of nanocrystal assemblies for laterally contacting molecules for electronic transport measurements. We first propose a phenomenological model based on rate equations for the formation of hybrid nanocrystal-molecule (respectively: 20 nm – 1.2 nm) nanostructures in solution. We then concentrate on nanocrystals (~ 60 nm) assembled between nano-gaps (~ 40 nm) as a contacting strategy for the measurement of electronic transport properties of thiophene-terminated conjugated molecules (1.5 nm long) in a two-terminal configuration, under vacuum conditions. Similar devices were also probed with a three-terminal configuration using thiophene-terminated oxidation-reduction active molecules (1.8 nm long) in liquid medium for the demonstration of the electrolytic gating technique. The experimental and modelling work presented in this thesis project brings into light physical and chemical processes taking place at the extremely narrow (~1 nm separation) and curved interface between two nanocrystals or one nanocrystal and a grain of a metallic electrode. The formation of molecular bridges at this kind of interface necessitates molecules to diffuse from a large liquid reservoir into the region in the first place. Molecular bonding must occur to the surface for both molecular ends: this is a low yield statistical process in itself as it depends on orientation of surfaces, on steric hindrance at the surface and on binding energies. On the other hand, the experimental work also touched the importance of the competition between potentially immiscible liquids in systems such that (organo-)metallic molecules solvated by organic solvent in water and organic solvent in contact with hydrated citrate stabilised nanocrystals dispersed in solutions or assembled between electrodes from both experimental and simulations point of view.
Resumo:
The wonder of the last century has been the rapid development in technology. One of the sectors that it has touched immensely is the electronic industry. There has been exponential development in the field and scientists are pushing new horizons. There is an increased dependence in technology for every individual from different strata in the society. Atomic Layer Deposition (ALD) is a unique technique for growing thin films. It is widely used in the semiconductor industry. Films as thin as few nanometers can be deposited using this technique. Although this process has been explored for a variety of oxides, sulphides and nitrides, a proper method for deposition of many metals is missing. Metals are often used in the semiconductor industry and hence are of significant importance. A deficiency in understanding the basic chemistry at the nanoscale for possible reactions has delayed the improvement in metal ALD. In this thesis, we study the intrinsic chemistry involved for Cu ALD. This work reports computational study using Density Functional Theory as implemented in TURBOMOLE program. Both the gas phase and surface reactions are studied in most of the cases. The merits and demerits of a promising transmetallation reaction have been evaluated at the beginning of the study. Further improvements in the structure of precursors and coreagent have been proposed. This has led to the proposal of metallocenes as co-reagents and Cu(I) carbene compounds as new set of precursors. A three step process for Cu ALD that generates ligand free Cu layer after every ALD pulse has also been studied. Although the chemistry has been studied under the umbrella of Cu ALD the basic principles hold true for ALD of other metals (e.g. Co, Ni, Fe ) and also for other branches of science like thin film deposition other than ALD, electrochemical reactions, etc.