5 resultados para epigenetics
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Resumo:
It has become clear that inflammation is beneficial to man, there are situations though that the inflammatory response causes damage to the host that is harmful to health. When the inflammatory response fails or is too strong, the health of the host is damaged and disease can occur. The implication of intestinal disease caused by an ineffective immune response is of great social and economic burden to society. The overarching purpose of this thesis is to assess inflammatory signalling targets associated with immune mediated disorders such as IBD, IBS and inflammatory liver disease. By assessing these targets and modifying their function I hope to contribute and expand further the pre-existing information on these disorders and improve the therapeutic interventions available in these debilitating conditions. I will assess the role of inflammation in disorders of the GI tract and liver IBD, IBS, hepatic inflammatory injury and furthermore, I will use pharmaceutical agents to activate and suppress components of the immune system. I will examine the inflammatory response in experimental models of disease for IBD and liver injury, I will attempt to alter these pathways using pharmaceutical intervention to delineate the disease causing mechanism that may lead to clinically relevant therapeutic interventions. In regards to IBS, I will attempt to improve the existing knowledge that exists in relation to the pathogenesis of this functional bowel disorder. I will attempt to define a mechanism by which the low grade mucosal inflammation that has been demonstrated by others arises and what this inflammation is induced by. The overall aim of this thesis is to attempt to further understand the mechanisms behind GI and liver disease. Looking at the inflammatory response in these specific conditions and how they can be altered may lead to exciting new therapies for inflammatory conditions in the gastrointestinal tract.
Resumo:
Cytokine-driven signalling shapes immune homeostasis and guides inflammatory responses mainly through induction of specific gene expression programmes both within and outside the immune cell compartment. These transcriptional outputs are often amplified via cytokine synergy, which sets a stimulatory threshold that safeguards from exacerbated inflammation and immunopathology. In this study, we investigated the molecular mechanisms underpinning synergy between two pivotal Th1 cytokines, IFN-γ and TNF-α, in human intestinal epithelial cells. These two proinflammatory mediators induce a unique state of signalling and transcriptional synergy implicated in processes such as antiviral and antitumour immunity, intestinal barrier and pancreatic β-cell dysfunction. Since its discovery more than 30 years ago, this biological phenomenon remains, however, only partially defined. Here, using a functional genomics approach including RNAi perturbation screens and small-molecule inhibitors, we identified two new regulators of IFN-γ/TNF-α-induced chemokine and antiviral gene and protein expression, a Bcl-2 protein BCL-G and a histone demethylase UTX. We also discovered that IFN-γ/TNF-α synergise to trigger a coordinated shutdown of major receptor tyrosine kinases expression in colon cancer cells. Together, these findings extend our current understanding of how IFN-γ/TNF-α synergy elicits qualitatively and quantitatively distinct outputs in the intestinal epithelium. Given the well-documented role of this synergistic state in immunopathology of various disorders, our results may help to inform the identification of high quality and biologically relevant druggable targets for diseases characterised by an IFN-γ/TNF-α high immune signature
Resumo:
Parkinson’s disease (PD) is a common, progressive neurodegenerative disease characterised by degeneration of nigrostriatal dopaminergic neurons, aggregation of α-synuclein and motor symptoms. Current dopamine-replacement strategies provide symptomatic relief, however their effectiveness wear off over time and their prolonged use leads to disabling side-effects in PD patients. There is therefore a critical need to develop new drugs and drug targets to protect dopaminergic neurons and their axons from degeneration in PD. Over recent years, there has been robust evidence generated showing that epigenetic dysregulation occurs in PD patients, and that epigenetic modulation is a promising therapeutic approach for PD. This article first discusses the present evidence implicating global, and dopaminergic neuron-specific, alterations in the methylome in PD, and the therapeutic potential of pharmacologically targeting the methylome. It then focuses on another mechanism of epigenetic regulation, histone acetylation, and describes how the histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes that mediate this process are attractive therapeutic targets for PD. It discusses the use of activators and/or inhibitors of HDACs and HATs in models of PD, and how these approaches for the selective modulation of histone acetylation elicit neuroprotective effects. Finally, it outlines the potential of employing small molecule epigenetic modulators as neuroprotective therapies for PD, and the future research that will be required to determine and realise this therapeutic potential.
Resumo:
Researchers interested in the neurobiology of the acute stress response in humans require a valid and reliable acute stressor that can be used under experimental conditions. The Trier Social Stress Test (TSST) provides such a testing platform. It induces stress by requiring participants to make an interview-style presentation, followed by a surprise mental arithmetic test, in front of an interview panel who do not provide feedback or encouragement. In this review, we outline the methodology of the TSST, and discuss key findings under conditions of health and stress-related disorder. The TSST has unveiled differences in males and females, as well as different age groups, in their neurobiological response to acute stress. The TSST has also deepened our understanding of how genotype may moderate the cognitive neurobiology of acute stress, and exciting new inroads have been made in understanding epigenetic contributions to the biological regulation of the acute stress response using the TSST. A number of innovative adaptations have been developed which allow for the TSST to be used in group settings, with children, in combination with brain imaging, and with virtual committees. Future applications may incorporate the emerging links between the gut microbiome and the stress response. Future research should also maximise use of behavioural data generated by the TSST. Alternative acute stress paradigms may have utility over the TSST in certain situations, such as those that require repeat testing. Nonetheless, we expect that the TSST remains the gold standard for examining the cognitive neurobiology of acute stress in humans.