4 resultados para energy conservation

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Political drivers such as the Kyoto protocol, the EU Energy Performance of Buildings Directive and the Energy end use and Services Directive have been implemented in response to an identified need for a reduction in human related CO2 emissions. Buildings account for a significant portion of global CO2 emissions, approximately 25-30%, and it is widely acknowledged by industry and research organisations that they operate inefficiently. In parallel, unsatisfactory indoor environmental conditions have proven to negatively impact occupant productivity. Legislative drivers and client education are seen as the key motivating factors for an improvement in the holistic environmental and energy performance of a building. A symbiotic relationship exists between building indoor environmental conditions and building energy consumption. However traditional Building Management Systems and Energy Management Systems treat these separately. Conventional performance analysis compares building energy consumption with a previously recorded value or with the consumption of a similar building and does not recognise the fact that all buildings are unique. Therefore what is required is a new framework which incorporates performance comparison against a theoretical building specific ideal benchmark. Traditionally Energy Managers, who work at the operational level of organisations with respect to building performance, do not have access to ideal performance benchmark information and as a result cannot optimally operate buildings. This thesis systematically defines Holistic Environmental and Energy Management and specifies the Scenario Modelling Technique which in turn uses an ideal performance benchmark. The holistic technique uses quantified expressions of building performance and by doing so enables the profiled Energy Manager to visualise his actions and the downstream consequences of his actions in the context of overall building operation. The Ideal Building Framework facilitates the use of this technique by acting as a Building Life Cycle (BLC) data repository through which ideal building performance benchmarks are systematically structured and stored in parallel with actual performance data. The Ideal Building Framework utilises transformed data in the form of the Ideal Set of Performance Objectives and Metrics which are capable of defining the performance of any building at any stage of the BLC. It is proposed that the union of Scenario Models for an individual building would result in a building specific Combination of Performance Metrics which would in turn be stored in the BLC data repository. The Ideal Data Set underpins the Ideal Set of Performance Objectives and Metrics and is the set of measurements required to monitor the performance of the Ideal Building. A Model View describes the unique building specific data relevant to a particular project stakeholder. The energy management data and information exchange requirements that underlie a Model View implementation are detailed and incorporate traditional and proposed energy management. This thesis also specifies the Model View Methodology which complements the Ideal Building Framework. The developed Model View and Rule Set methodology process utilises stakeholder specific rule sets to define stakeholder pertinent environmental and energy performance data. This generic process further enables each stakeholder to define the resolution of data desired. For example, basic, intermediate or detailed. The Model View methodology is applicable for all project stakeholders, each requiring its own customised rule set. Two rule sets are defined in detail, the Energy Manager rule set and the LEED Accreditor rule set. This particular measurement generation process accompanied by defined View would filter and expedite data access for all stakeholders involved in building performance. Information presentation is critical for effective use of the data provided by the Ideal Building Framework and the Energy Management View definition. The specifications for a customised Information Delivery Tool account for the established profile of Energy Managers and best practice user interface design. Components of the developed tool could also be used by Facility Managers working at the tactical and strategic levels of organisations. Informed decision making is made possible through specified decision assistance processes which incorporate the Scenario Modelling and Benchmarking techniques, the Ideal Building Framework, the Energy Manager Model View, the Information Delivery Tool and the established profile of Energy Managers. The Model View and Rule Set Methodology is effectively demonstrated on an appropriate mixed use existing ‘green’ building, the Environmental Research Institute at University College Cork, using the Energy Management and LEED rule sets. Informed Decision Making is also demonstrated using a prototype scenario for the demonstration building.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Current building regulations are generally prescriptive in nature. It is widely accepted in Europe that this form of building regulation is stifling technological innovation and leading to inadequate energy efficiency in the building stock. This has increased the motivation to move design practices towards a more ‘performance-based’ model in order to mitigate inflated levels of energy-use consumed by the building stock. A performance based model assesses the interaction of all building elements and the resulting impact on holistic building energy-use. However, this is a nebulous task due to building energy-use being affected by a myriad of heterogeneous agents. Accordingly, it is imperative that appropriate methods, tools and technologies are employed for energy prediction, measurement and evaluation throughout the project’s life cycle. This research also considers that it is imperative that the data is universally accessible by all stakeholders. The use of a centrally based product model for exchange of building information is explored. This research describes the development and implementation of a new building energy-use performance assessment methodology. Termed the Building Effectiveness Communications ratios (BECs) methodology, this performance-based framework is capable of translating complex definitions of sustainability for energy efficiency and depicting universally understandable views at all stage of the Building Life Cycle (BLC) to the project’s stakeholders. The enabling yardsticks of building energy-use performance, termed Ir and Pr, provide continuous design and operations feedback in order to aid the building’s decision makers. Utilised effectively, the methodology is capable of delivering quality assurance throughout the BLC by providing project teams with quantitative measurement of energy efficiency. Armed with these superior enabling tools for project stakeholder communication, it is envisaged that project teams will be better placed to augment a knowledge base and generate more efficient additions to the building stock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lacticin 3147, enterocin AS-48, lacticin 481, variacin, and sakacin P are bacteriocins offering promising perspectives in terms of preservation and shelf-life extension of food products and should find commercial application in the near future. The studies detailing their characterization and bio-preservative applications are reviewed. Transcriptomic analyses showed a cell wall-targeted response of Lactococcus lactis IL1403 during the early stages of infection with the lytic bacteriophage c2, which is probably orchestrated by a number of membrane stress proteins and involves D-alanylation of membrane lipoteichoic acids, restoration of the physiological proton motive force disrupted following bacteriophage infection, and energy conservation. Sequencing of the eight plasmids of L. lactis subsp. cremoris DPC3758 from raw milk cheese revealed three anti-phage restriction/modification (R/M) systems, immunity/resistance to nisin, lacticin 481, cadmium and copper, and six conjugative/mobilization regions. A food-grade derivative strain with enhanced bacteriophage resistance was generated via stacking of R/M plasmids. Sequencing and functional analysis of the four plasmids of L. lactis subsp. lactis biovar. diacetylactis DPC3901 from raw milk cheese revealed genes novel to Lactococcus and typical of bacteria associated with plants, in addition to genes associated with plant-derived lactococcal strains. The functionality of a novel high-affinity regulated system for cobalt uptake was demonstrated. The bacteriophage resistant and bacteriocin-producing plasmid pMRC01 places a metabolic burden on lactococcal hosts resulting in lowered growth rates and increased cell permeability and autolysis. The magnitude of these effects is strain dependent but not related to bacteriocin production. Starters’ acidification capacity is not significantly affected. Transcriptomic analyses showed that pMRC01 abortive infection (Abi) system is probably subjected to a complex regulatory control by Rgg-like ORF51 and CopG-like ORF58 proteins. These regulators are suggested to modulate the activity of the putative Abi effectors ORF50 and ORF49 exhibiting topology and functional similarities to the Rex system aborting bacteriophage λ lytic growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The GENESI project has the ambitious goal of bringing WSN technology to the level where it can provide the core of the next generation of systems for structural health monitoring that are long lasting, pervasive and totally distributed and autonomous. This goal requires embracing engineering and scientific challenges never successfully tackled before. Sensor nodes will be redesigned to overcome their current limitations, especially concerning energy storage and provisioning (we need devices with virtually infinite lifetime) and resilience to faults and interferences (for reliability and robustness). New software and protocols will be defined to fully take advantage of the new hardware, providing new paradigms for cross-layer interaction at all layers of the protocol stack and satisfying the requirements of a new concept of Quality of Service (QoS) that is application-driven, truly reflecting the end user perspective and expectations. The GENESI project will develop long lasting sensor nodes by combining cutting edge technologies for energy generation from the environment (energy harvesting) and green energy supply (small form factor fuel cells); GENESI will define models for energy harvesting, energy conservation in super-capacitors and supplemental energy availability through fuel cells, in addition to the design of new algorithms and protocols for dynamic allocation of sensing and communication tasks to the sensors. The project team will design communication protocols for large scale heterogeneous wireless sensor/actuator networks with energy-harvesting capabilities and define distributed mechanisms for context assessment and situation awareness. This paper presents an analysis of the GENESI system requirements in order to achieve the ambitious goals of the project. Extending from the requirements presented, the emergent system specification is discussed with respect to the selection and integration of relevant system components.The resulting integrated system will be evaluated and characterised to ensure that it is capable of satisfying the functional requirements of the project