4 resultados para enantioselectivity
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis describes a systematic investigation of the mechanistic and synthetic aspects of intramolecular reactions of a series of α-diazo-β-oxo sulfone derivatives using copper and, to a lesser extent, rhodium catalysts. The key reaction pathways explored were C–H insertion and cyclopropanation, with hydride transfer competing in certain instances. Significantly, up to 98% ee has been achieved in the C–H insertion processes using copper-NaBARF-bisoxazoline catalysts, with the presence of the additive NaBARF critical to the efficiency of the transformations. This novel synthetic methodology provides access to a diverse range of enantioenriched heterocyclic compounds including thiopyrans, sulfolanes, β- and γ-lactams, in addition to carbocycles such as fused cyclopropanes. The synthesis of the α-diazosulfones required for subsequent investigations is initially described. Of the twenty seven diazo sulfones described, nineteen are novel and are fully characterised in this work. The discussion is subsequently focused on a study of the copper and rhodium catalysed reactions of the α-diazosulfones with Chapter Four concentrated on highly enantioselective C–H insertion to form thiopyrans and sufolanes, Chapter Five focused on C–H insertion to form fused sulfolanes, Chapter Six focused on C–H insertion in sulfonyl α-diazoamides where both lactam formation and / or thiopyran / sulfolane formation can result from competing C–H insertion pathways, while Chapter Seven focuses on cyclopropanation to yield fused cyclopropane derviatives. One of the key outcomes of this work is an insight into the steric and / or electronic factors on both the substrate and the catalyst which control regio-, diastereo- and enantioselectivity patterns in these synthetically powerful transformations. Full experimental details for the synthesis and spectral characterisation of the compounds are included at the end of each Chapter, with details of chiral stationary phase HPLC analysis and assignment of absolute stereochemistry included in the appendix.
Resumo:
A large number of optically active drugs and natural products contain α-functionalised ketones or simple derivatives thereof. Furthermore, chiral α-alkylated ketones are useful synthons and have found widespread use in total synthesis. The asymmetric alkylation of ketones represents one of the most powerful and longstanding procedures in organic chemistry. Surprisingly, however, only one effective methodology is available, and this involves the use of chiral auxiliaries. This is discussed in Chapter 1, which also provides a background of other key topics discussed throughout the thesis. Expanding on the existing methodology of chiral auxiliaries, Chapter 2 details the synthesis of a novel chiral auxiliary containing a pyrrolidine ring and its use in the asymmetric preparation of α-alkylated ketones with good enantioselectivity. The synthesis of racemic α-alkylated ketones as reference standards for GC chromatography is also reported in this chapter. Chapter 3 details a new approach to chiral α-alkylated ketones using an intermolecular chirality transfer methodology. This approach employs the use of simple non-chiral dimethylhydrazones and their asymmetric alkylation using the chiral diamine ligands, (+)- and (-)-sparteine. The methodology described represents the first example of an asymmetric alkylation of non-chiral azaenolates. Enantiomeric ratios up to 83 : 17 are observed. Chapter 4 introduces the first aldol-Tishchenko reaction of an imine derivative for the preparation of 1,3-aminoalcohol precursors. 1,3-Aminoalcohols can be synthesised via indirect routes involving various permutations of stepwise construction with asymmetric induction. Our approach offers an alternative highly diastereomeric route to the synthesis of this important moiety utilising N-tert-butanesulfinyl imines in an aldol-Tishchenko-type reaction. Chapter 5 details the experimental procedures for all of the above work. Chapter 6 discusses the results of a separate research project undertaken during this PhD. 2-alkyl-quinolin-4-ones and their N-substituted derivatives have several important biological functions such as the role of Pseudomonas quinolone signal (PQS) in quorum sensing. Herein, we report the synthesis of its biological precursor, 2-heptyl-4-hydroxy-quinoline (HHQ) and possible isosteres of PQS; the C-3 Cl, Br and I analogues. N-Methylation of the iodide was also feasible and the usefulness of this compound showcased in Pd-catalysed cross-coupling reactions, thus allowing access to a diverse set of biologically important molecules.
Resumo:
This thesis is split into three sections based on three different areas of research. In the first section, investigations into the α-alkylation of ketones using a novel chiral auxiliary is reported. This chiral auxiliary was synthesised containing a pyrrolidine ring in the chiral arm and was applied in the preparation of α-alkylated ketones which were obtained in up to 92% ee and up to 63% yield over two steps. Both 3-pentanone and propiophenone based ketones were used in the investigation with a variety of both alkyl and benzyl based electrophiles. The novel chiral auxiliary was also successful when applied to Michael and aldol reactions. A diamine precursor en route to the chiral auxiliary was also applied as an organocatalyst in a Michael reaction, with the product obtained in excellent enantioselectivity. In the second section, investigations into potential anti-quorum sensing molecules are reported. The bacteria Pseudomonas aeruginosa is an antibiotic-resistant pathogen that demonstrates cooperative behaviours and communicates using small chemical molecules in a process termed quorum sensing. A variety of C-3 analogues of the quorum sensing molecules used by P. aeruginosa were synthesised. Expanding upon previous research within the group, investigations were carried out into alternative protecting group strategies of 2-heptyl-4-(1H)- quinolone with the aim of improving the yields of products of cross-coupling reactions. In the third section, investigations into fluorination and trifluoromethylation of 2-pyrones, pyridones and quinolones is reported. The incorporation of a fluorine atom or a trifluoromethyl group into a molecule is important in pharmaceutical drug discovery programmes as it can lead to increased lipophilicity and bioavailability, however late-stage incorporation is rarely reported. Both direct fluorination and trifluoromethylation were attempted. Eight trifluoromethylated 2-pyrones, five trifluoromethylated 2-pyridones and a trifluoromethylated 2-quinolone were obtained in a late-stage synthesis from their respective iodinated precursors using methyl fluorosulfonyldifluoroacetate as a trifluoromethylating reagent.
Resumo:
Enantio- and diastereoselective hydrogenation of β-keto-γ-lactams with a ruthenium–BINAP catalyst, involving dynamic kinetic resolution, has been employed to provide a general, asymmetric approach to β-hydroxy-γ-lactams, a structural motif common to several bioactive compounds. Full conversion to the desired β-hydroxy-γ-lactams was achieved with high diastereoselectivity (up to >98% de) by addition of catalytic HCl and LiCl, while β-branching of the ketone substituent demonstrated a pronounced effect on the modest to excellent enantioselectivity (up to 97% ee) obtained.