2 resultados para empirical models
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The wave energy industry is entering a new phase of pre-commercial and commercial deployments of full-scale devices, so better understanding of seaway variability is critical to the successful operation of devices. The response of Wave Energy Converters to incident waves govern their operational performance and for many devices, this is highly dependent on spectral shape due to their resonant properties. Various methods of wave measurement are presented, along with analysis techniques and empirical models. Resource assessments, device performance predictions and monitoring of operational devices will often be based on summary statistics and assume a standard spectral shape such as Pierson-Moskowitz or JONSWAP. Furthermore, these are typically derived from the closest available wave data, frequently separated from the site on scales in the order of 1km. Therefore, variability of seaways from standard spectral shapes and spatial inconsistency between the measurement point and the device site will cause inaccuracies in the performance assessment. This thesis categorises time and frequency domain analysis techniques that can be used to identify changes in a sea state from record to record. Device specific issues such as dimensional scaling of sea states and power output are discussed along with potential differences that arise in estimated and actual output power of a WEC due to spectral shape variation. This is investigated using measured data from various phases of device development.
Resumo:
Understanding how dynamic ecological communities respond to anthropogenic drivers of change such as habitat loss and fragmentation, climate change and the introduction of alien species requires that there is a theoretical framework able to predict community dynamics. At present there is a lack of empirical data that can be used to inform and test predictive models, which means that much of our knowledge regarding the response of ecological communities to perturbations is obtained from theoretical analyses and simulations. This thesis is composed of two strands of research: an empirical experiment conducted to inform the scaling of intraspecific and interspecific interaction strengths in a three species food chain and a series of theoretical analyses on the changes to equilibrium biomass abundances following press perturbations. The empirical experiment is a consequence of the difficulties faced when parameterising the intraspecific interaction strengths in a Lotka-Volterra model. A modification of the dynamic index is used alongside the original dynamic index to estimate intraspecific interactions and interspecific interaction strengths in a three species food. The theoretical analyses focused on the effect of press perturbations to focal species on the equilibrium biomass densities of all species in the community; these perturbations allow for the quantification of a species total net effect. It was found that there is a strong and consistent positive relationship between a species body size and its total net effect for a set of 97 synthetic food webs and also for the Ythan Estuary and Tuesday Lake food webs (empirically described food webs). It is shown that ecological constraints (due to allometric scaling) on the magnitude of entries in the community matrix cause the patterns observed in the inverse community matrix and thus explain the relationship between a species body mass and its total net effect in a community.