5 resultados para electro-absorption modulators

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for optical bandwidth continues to increase year on year and is being driven primarily by entertainment services and video streaming to the home. Current photonic systems are coping with this demand by increasing data rates through faster modulation techniques, spectrally efficient transmission systems and by increasing the number of modulated optical channels per fibre strand. Such photonic systems are large and power hungry due to the high number of discrete components required in their operation. Photonic integration offers excellent potential for combining otherwise discrete system components together on a single device to provide robust, power efficient and cost effective solutions. In particular, the design of optical modulators has been an area of immense interest in recent times. Not only has research been aimed at developing modulators with faster data rates, but there has also a push towards making modulators as compact as possible. Mach-Zehnder modulators (MZM) have proven to be highly successful in many optical communication applications. However, due to the relatively weak electro-optic effect on which they are based, they remain large with typical device lengths of 4 to 7 mm while requiring a travelling wave structure for high-speed operation. Nested MZMs have been extensively used in the generation of advanced modulation formats, where multi-symbol transmission can be used to increase data rates at a given modulation frequency. Such nested structures have high losses and require both complex fabrication and packaging. In recent times, it has been shown that Electro-absorption modulators (EAMs) can be used in a specific arrangement to generate Quadrature Phase Shift Keying (QPSK) modulation. EAM based QPSK modulators have increased potential for integration and can be made significantly more compact than MZM based modulators. Such modulator designs suffer from losses in excess of 40 dB, which limits their use in practical applications. The work in this thesis has focused on how these losses can be reduced by using photonic integration. In particular, the integration of multiple lasers with the modulator structure was considered as an excellent means of reducing fibre coupling losses while maximising the optical power on chip. A significant difficultly when using multiple integrated lasers in such an arrangement was to ensure coherence between the integrated lasers. The work investigated in this thesis demonstrates for the first time how optical injection locking between discrete lasers on a single photonic integrated circuit (PIC) can be used in the generation of coherent optical signals. This was done by first considering the monolithic integration of lasers and optical couplers to form an on chip optical power splitter, before then examining the behaviour of a mutually coupled system of integrated lasers. By operating the system in a highly asymmetric coupling regime, a stable phase locking region was found between the integrated lasers. It was then shown that in this stable phase locked region the optical outputs of each laser were coherent with each other and phase locked to a common master laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reflective modulators based on the combination of an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) are attractive devices for applications in long reach carrier distributed passive optical networks (PONs) due to the gain provided by the SOA and the high speed and low chirp modulation of the EAM. Integrated R-EAM-SOAs have experimentally shown two unexpected and unintuitive characteristics which are not observed in a single pass transmission SOA: the clamping of the output power of the device around a maximum value and low patterning distortion despite the SOA being in a regime of gain saturation. In this thesis a detailed analysis is carried out using both experimental measurements and modelling in order to understand these phenomena. For the first time it is shown that both the internal loss between SOA and R-EAM and the SOA gain play an integral role in the behaviour of gain saturated R-EAM-SOAs. Internal loss and SOA gain are also optimised for use in a carrier distributed PONs in order to access both the positive effect of output power clamping, and hence upstream dynamic range reduction, combined with low patterning operation of the SOA Reflective concepts are also gaining interest for metro transport networks and short reach, high bit rate, inter-datacentre links. Moving the optical carrier generation away from the transmitter also has potential advantages for these applications as it avoids the need for cooled photonics being placed directly on hot router line-cards. A detailed analysis is carried out in this thesis on a novel colourless reflective duobinary modulator, which would enable wavelength flexibility in a power-efficient reflective metro node.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two classes of techniques have been developed to whiten the quantization noise in digital delta-sigma modulators (DDSMs): deterministic and stochastic. In this two-part paper, a design methodology for reduced-complexity DDSMs is presented. The design methodology is based on error masking. Rules for selecting the word lengths of the stages in multistage architectures are presented. We show that the hardware requirement can be reduced by up to 20% compared with a conventional design, without sacrificing performance. Simulation and experimental results confirm theoretical predictions. Part I addresses MultistAge noise SHaping (MASH) DDSMs; Part II focuses on single-quantizer DDSMs..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel spectroscopic method, incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), has been modified and extended to measure absorption spectra in the near-ultraviolet with high sensitivity. The near-ultraviolet region extends from 300 to 400 nm and is particularly important in tropospheric photochemistry; absorption of near-UV light can also be exploited for sensitive trace gas measurements of several key atmospheric constituents. In this work, several IBBCEAS instruments were developed to record reference spectra and to measure trace gas concentrations in the laboratory and field. An IBBCEAS instrument was coupled to a flow cell for measuring very weak absorption spectra between 335 and 375 nm. The instrument was validated against the literature absorption spectrum of SO2. Using the instrument, we report new absorption cross-sections of O3, acetone, 2-butanone, and 2-pentanone in this spectral region, where literature data diverge considerably owing to the extremely weak absorption. The instrument was also applied to quantifying low concentrations of the short-lived radical, BrO, in the presence of strong absorption by Br2 and O3. A different IBBCEAS system was adapted to a 4 m3 atmosphere simulation chamber to record the absorption cross-sections of several low vapour pressure compounds, which are otherwise difficult to measure. Absorption cross-sections of benzaldehyde and the more volatile alkyl nitrites agree well with previous spectra; on this basis, the cross-sections of several nitrophenols are reported for the first time. In addition, the instrument was also used to study the optical properties of secondary organic aerosol formed following the photooxidation of isoprene. An extractive IBBCEAS instrument was developed for detecting HONO and NO2 and had a sensitivity of about 10-9 cm-1. This instrument participated in a major international intercomparison of HONO and NO2 measurements held in the EUPHORE simulation chamber in Valencia, Spain, and results from that campaign are also reported here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although broadband incoherent light does not efficiently couple into a high-finesse optical cavity, its transmission is readily detectable and enables applications in cavity-enhanced absorption spectroscopy in the gas phase, liquid phase and on surfaces. This chapter gives an overview of measurement principles and experimental approaches implementing incoherent light sources in cavity-enhanced spectroscopic applications. The general principles of broadband CEAS are outlined and general “pros and cons” discussed, detailing aspects like cavity mirror reflectivity calibration or the establishment of detection limits. Different approaches concerning light sources, cavity design and detection schemes are discussed and a comprehensive overview of the current literature based on a methodological classification scheme is also presented.