2 resultados para dielectric barrier discharge (DBD)

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depression is among the leading causes of disability worldwide. Currently available antidepressant drugs have unsatisfactory efficacy, with up to 60% of depressed patients failing to respond adequately to treatment. Emerging evidence has highlighted a potential role for the efflux transporter P-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), in the aetiology of treatment-resistant depression. In this thesis, the potential of P-gp inhibition as a strategy to enhance the brain distribution and pharmacodynamic effects of antidepressant drugs was investigated. Pharmacokinetic studies demonstrated that administration of the P-gp inhibitors verapamil or cyclosporin A (CsA) enhanced the BBB transport of the antidepressants imipramine and escitalopram in vivo. Furthermore, both imipramine and escitalopram were identified as transported substrates of human P-gp in vitro. Contrastingly, human P-gp exerted no effect on the transport of four other antidepressants (amitriptyline, duloxetine, fluoxetine and mirtazapine) in vitro. Pharmacodynamic studies revealed that pre-treatment with verapamil augmented the behavioural effects of escitalopram in the tail suspension test (TST) of antidepressant-like activity in mice. Moreover, pre-treatment with CsA exacerbated the behavioural manifestation of an escitalopram-induced mouse model of serotonin syndrome, a serious adverse reaction associated with serotonergic drugs. This finding highlights the potential for unwanted side-effects which may occur due to increasing brain levels of antidepressants by P-gp inhibition, although further studies are needed to fully elucidate the mechanism(s) at play. Taken together, the research outlined in this thesis indicates that P-gp may restrict brain concentrations of escitalopram and imipramine in patients. Moreover, we show that increasing the brain distribution of an antidepressant by P-gp inhibition can result in an augmentation of antidepressant-like activity in vivo. These findings raise the possibility that P-gp inhibition may represent a potentially beneficial strategy to augment antidepressant treatment in clinical practice. Further studies are now warranted to evaluate the safety and efficacy of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The confinement of fast particles, present in a tokamak plasma as nuclear fusion products and through external heating, will be essential for any future fusion reactor. Fast particles can be expelled from the plasma through their interaction with Alfvén eigenmode (AE) instabilities. AEs can exist in gaps in the Alfvén continuum created by plasma equilibrium non-uniformities. In the ASDEX Upgrade tokamak, low-frequency modes in the frequency range from f ≈ 10 − 90kHz, including beta-induced Alfvén eigenmodes (BAEs) and lower frequency modes with mixed Alfvén and acoustic polarisations, have been observed. These exist in gaps in the Alfvén continuum opened up by geodesic curvature and finite plasma compressibility. In this thesis, a kinetic dispersion relation is solved numerically to investigate the influence of thermal plasma profiles on the evolution of these low-frequency modes during the sawtooth cycle. Using information gained from various experimental sources to constrain the equilibrium reconstructions, realistic safety factor profiles are obtained for the analysis using the CLISTE code. The results for the continuum accumulation point evolution are then compared with experimental results from ASDEX Upgrade during periods of ICRH only as well as for periods with both ICRH and ECRH applied simultaneously. It is found that the diamagnetic frequency plays an important role in influencing the dynamics of BAEs and low-frequency acoustic Alfvén eigenmodes, primarily through the presence of gradients in the thermal plasma profiles. Different types of modes that are observed during discharges heated almost exclusively by ECRH were also investigated. These include electron internal transport barrier (eITB) driven modes, which are observed to coincide with the occurrence of an eITB in the plasma during the low-density phase of the discharge. Also observed are BAE-like modes and edge-TAEs, both of which occur during the H-mode phase of the discharge.