2 resultados para developmental

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maternal infection during pregnancy increases the risk of several neuropsychiatric disorders later in life, many of which have a component of dopaminergic (DA) dysfunction, including schizophrenia, autism spectrum disorders (ASD), and attention deficit hyperactivity disorder (ADHD). The majority of DA neurons are found in the adult midbrain; as such the midbrain is a key region of interest regarding these disorders. The literature is conflicting regarding the behavioral alterations following maternal immune activation (MIA) exposure, and the cellular and molecular consequences of MIA on the developing midbrain remain to be fully elucidated. Thus, this thesis aimed to establish the consequences of acute and mild MIA on offspring dopamine-related behaviors, as well as the associated cellular and molecular disturbances of MIA on offspring midbrains. We utilized a rat model of MIA using low dose (50μg/kg, I.P.) of LPS administered at different gestational ages. Our first study indicated that MIA at later gestational ages significantly increased pro-inflammatory IL-1β expression, and reduced HSD11B2 expression in the placenta, which is an important regulator of fetal development. In utero LPS exposure at later gestational ages also impaired the growth of neurons from affected offspring. This study identified key gestational stages during which MIA resulted in differential effects. We utilized these time points in subsequent studies, the next of which investigated neurobehavioral outcomes following MIA. Our results from that study showed that motor differences occurred in juvenile offspring following MIA at E16 only, and these differences were compensated for in adolescence. Then, there was a decline in motor behavior capabilities in adulthood, again only for animals exposed to MIA on E16 (and not E12). Furthermore, our results also demonstrated adolescent and adult offspring that were exposed to MIA at E12 had diminished responses to amphetamine in reward seeking behaviors. In our final study, we aimed to investigate the molecular and cellular changes following MIA which might explain these behavioral alterations. This final study showed a differential inflammatory response in fetal midbrains depending on gestational age of exposure as well as differential developmental alterations. For example, LPS exposure at E16 resulted in decreased VM neurosphere size after 7DIV and this was associated with an increased susceptibility to neurotoxic effects of pro-inflammatory cytokines for VM neurospheres and VM DA neurons treated in culture. In utero LPS exposure at E16 also reduced DA neuron count of fetal VM, measured by TH staining. However, there were no differences in DA neuron number in juvenile, adolescent, or adult offspring. Similarly, LPS exposure did not alter cell number or morphology of glial cells in the midbrains of affected offspring. In conclusion, this thesis indicated later rat pregnancy (E16) as vulnerable time for MIA to affect the development of the nigrostriatal pathway and subsequent behavioral outcomes, possibly implicating a role for MIA in increased risk for disorders associated with motor behavior, like PD. These effects may be mediated through alterations in the placenta and altered inflammatory mediators in the offspring brain. This thesis has also shown that MIA in earlier rat pregnancy (E12) results in altered mesocorticolimbic function, and in particular MIA on E12 resulted in a differential response to amphetamine in affected offspring, which may implicate a role for MIA in increasing the risk for disorders associated with this pathway, including drug tolerance and addiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infants and young children are at particular risk of iron deficiency and its associated consequences for growth and development. The main objectives of this thesis were to quantify iron intakes, status and determinants of status in two year olds; explore determinants of neonatal iron stores; investigate associations between iron status at birth and two years with neurodevelopmental outcomes at two years and explore the influence of growth on iron status in early childhood, using data from the Cork BASELINE (Babies after SCOPE: Evaluating Longitudinal Impact using Neurological and Nutritional Endpoints) Birth Cohort Study (n=2137). Participants were followed prospectively with interviewer-led questionnaires and clinical assessments at day 2 and at 2, 6, 12 and 24 months. At two years, there was a low prevalence of iron deficiency and iron deficiency anaemia in this cohort, representing the largest study of iron status in toddlers in Europe, to date. The increased consumption of iron-fortified products and compliance with recommendations to limit unmodified cows’ milk intakes in toddlers has contributed to the observed improvements in status. Low serum ferritin concentrations at birth, which reflect neonatal iron stores, were shown to track through to two years of age; delivery by Caesarean section, being born small-for-gestational age and maternal obesity and smoking in pregnancy were all associated with significantly lower neonatal iron stores. Despite a low prevalence of iron deficiency in this cohort, both a mean corpuscular volume <74fl and ferritin concentrations <20μg/l were associated with lower neurodevelopmental outcomes at two years. An inverse association between growth in the second year of life and iron status at two years was also observed. This thesis has presented data from one of the largest, extensively-characterised cohorts of young children, to date, to explore iron and its associations with growth and development.