8 resultados para development communication
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Zakes Mda, dubbed one of South Africa's most prolific playwrights, produced his richest and most powerful theatre work during the 70s and 80s. Ironically, it is only in the 90s that he has been acknowledged in his own country as one of its foremost dramatists - ironic since he has recently moved away from drama into the realms of fiction. Fortunately Mda has accumulated a worthy canon of dramatic works, spanning radio and film, as well as theatre, and there is no reason to believe that he will not return to play writing. Mda has worked extensively in theatre in various capacities but most notably in the area of theatre-for-development. For example, he worked as director with Maratholi Travelling Theatre in Lesotho, an experience which contributed, in part, towards his book "When People Play People: Development Communication Through Theatre". Mda's plays have been produced in the United States, Britain, Spain, France and Russia as well as in southern Africa. "The Nun's Romantic Story" has been translated into Castilian and Catalan and "We Shall Sing for the Fatherland" and "Dark Voices Ring" have both been translated into Russian and French. In South Africa he won the Merit Award of the Amstel Playwright of the Year Society for "We Shall Sing for the Fatherland" in 1978 and in 1979 he was Amstel Playright of the Year for "The Hill". For his novel "She Plays with the Darkness", he won the Sanlam Literary Award in 1995.
Resumo:
Embedded wireless sensor network (WSN) systems have been developed and used in a wide variety of applications such as local automatic environmental monitoring; medical applications analysing aspects of fitness and health energy metering and management in the built environment as well as traffic pattern analysis and control applications. While the purpose and functions of embedded wireless sensor networks have a myriad of applications and possibilities in the future, a particular implementation of these ambient sensors is in the area of wearable electronics incorporated into body area networks and everyday garments. Some of these systems will incorporate inertial sensing devices and other physical and physiological sensors with a particular focus on the application areas of athlete performance monitoring and e-health. Some of the important physical requirements for wearable antennas are that they are light-weight, small and robust and should also use materials that are compatible with a standard manufacturing process such as flexible polyimide or fr4 material where low cost consumer market oriented products are being produced. The substrate material is required to be low loss and flexible and often necessitates the use of thin dielectric and metallization layers. This paper describes the development of such a wearable, flexible antenna system for ISM band wearable wireless sensor networks. The material selected for the development of the wearable system in question is DE104i characterized by a dielectric constant of 3.8 and a loss tangent of 0.02. The antenna feed line is a 50 Ohm microstrip topology suitable for use with standard, high-performance and low-cost SMA-type RF connector technologies, widely used for these types of applications. The desired centre frequency is aimed at the 2.4GHz ISM band to be compatible with IEEE 802.15.4 Zigbee communication protocols and the Bluetooth standard which operate in this band.
Resumo:
Current building regulations are generally prescriptive in nature. It is widely accepted in Europe that this form of building regulation is stifling technological innovation and leading to inadequate energy efficiency in the building stock. This has increased the motivation to move design practices towards a more ‘performance-based’ model in order to mitigate inflated levels of energy-use consumed by the building stock. A performance based model assesses the interaction of all building elements and the resulting impact on holistic building energy-use. However, this is a nebulous task due to building energy-use being affected by a myriad of heterogeneous agents. Accordingly, it is imperative that appropriate methods, tools and technologies are employed for energy prediction, measurement and evaluation throughout the project’s life cycle. This research also considers that it is imperative that the data is universally accessible by all stakeholders. The use of a centrally based product model for exchange of building information is explored. This research describes the development and implementation of a new building energy-use performance assessment methodology. Termed the Building Effectiveness Communications ratios (BECs) methodology, this performance-based framework is capable of translating complex definitions of sustainability for energy efficiency and depicting universally understandable views at all stage of the Building Life Cycle (BLC) to the project’s stakeholders. The enabling yardsticks of building energy-use performance, termed Ir and Pr, provide continuous design and operations feedback in order to aid the building’s decision makers. Utilised effectively, the methodology is capable of delivering quality assurance throughout the BLC by providing project teams with quantitative measurement of energy efficiency. Armed with these superior enabling tools for project stakeholder communication, it is envisaged that project teams will be better placed to augment a knowledge base and generate more efficient additions to the building stock.
Resumo:
Silicon (Si) is the base material for electronic technologies and is emerging as a very attractive platform for photonic integrated circuits (PICs). PICs allow optical systems to be made more compact with higher performance than discrete optical components. Applications for PICs are in the area of fibre-optic communication, biomedical devices, photovoltaics and imaging. Germanium (Ge), due to its suitable bandgap for telecommunications and its compatibility with Si technology is preferred over III-V compounds as an integrated on-chip detector at near infrared wavelengths. There are two main approaches for Ge/Si integration: through epitaxial growth and through direct wafer bonding. The lattice mismatch of ~4.2% between Ge and Si is the main problem of the former technique which leads to a high density of dislocations while the bond strength and conductivity of the interface are the main challenges of the latter. Both result in trap states which are expected to play a critical role. Understanding the physics of the interface is a key contribution of this thesis. This thesis investigates Ge/Si diodes using these two methods. The effects of interface traps on the static and dynamic performance of Ge/Si avalanche photodetectors have been modelled for the first time. The thesis outlines the original process development and characterization of mesa diodes which were fabricated by transferring a ~700 nm thick layer of p-type Ge onto n-type Si using direct wafer bonding and layer exfoliation. The effects of low temperature annealing on the device performance and on the conductivity of the interface have been investigated. It is shown that the diode ideality factor and the series resistance of the device are reduced after annealing. The carrier transport mechanism is shown to be dominated by generation–recombination before annealing and by direct tunnelling in forward bias and band-to-band tunnelling in reverse bias after annealing. The thesis presents a novel technique to realise photodetectors where one of the substrates is thinned by chemical mechanical polishing (CMP) after bonding the Si-Ge wafers. Based on this technique, Ge/Si detectors with remarkably high responsivities, in excess of 3.5 A/W at 1.55 μm at −2 V, under surface normal illumination have been measured. By performing electrical and optical measurements at various temperatures, the carrier transport through the hetero-interface is analysed by monitoring the Ge band bending from which a detailed band structure of the Ge/Si interface is proposed for the first time. The above unity responsivity of the detectors was explained by light induced potential barrier lowering at the interface. To our knowledge this is the first report of light-gated responsivity for vertically illuminated Ge/Si photodiodes. The wafer bonding approach followed by layer exfoliation or by CMP is a low temperature wafer scale process. In principle, the technique could be extended to other materials such as Ge on GaAs, or Ge on SOI. The unique results reported here are compatible with surface normal illumination and are capable of being integrated with CMOS electronics and readout units in the form of 2D arrays of detectors. One potential future application is a low-cost Si process-compatible near infrared camera.
Resumo:
This PhD thesis investigates the potential use of science communication models to engage a broader swathe of actors in decision making in relation to scientific and technological innovation in order to address possible democratic deficits in science and technology policy-making. A four-pronged research approach has been employed to examine different representations of the public(s) and different modes of engagement. The first case study investigates whether patient-groups could represent an alternative needs-driven approach to biomedical and health sciences R & D. This is followed by enquiry into the potential for Science Shops to represent a bottom-up approach to promote research and development of local relevance. The barriers and opportunities for the involvement of scientific researchers in science communication are next investigated via a national survey which is comparable to a similar survey conducted in the UK. The final case study investigates to what extent opposition or support regarding nanotechnology (as an emerging technology) is reflected amongst the YouTube user community and the findings are considered in the context of how support or opposition to new or emerging technologies can be addressed using conflict resolution based approaches to manage potential conflict trajectories. The research indicates that the majority of communication exercises of relevance to science policy and planning take the form of a one-way flow of information with little or no facility for public feedback. This thesis proposes that a more bottom-up approach to research and technology would help broaden acceptability and accountability for decisions made relating to new or existing technological trajectories. This approach could be better integrated with and complementary to government, institutional, e.g. university, and research funding agencies activities and help ensure that public needs and issues are better addressed directly by the research community. Such approaches could also facilitate empowerment of societal stakeholders regarding scientific literacy and agenda-setting. One-way information relays could be adapted to facilitate feedback from representative groups e.g. Non-governmental organisations or Civil Society Organisations (such as patient groups) in order to enhance the functioning and socio-economic relevance of knowledge-based societies to the betterment of human livelihoods.
Resumo:
High volumes of data traffic along with bandwidth hungry applications, such as cloud computing and video on demand, is driving the core optical communication links closer and closer to their maximum capacity. The research community has clearly identifying the coming approach of the nonlinear Shannon limit for standard single mode fibre [1,2]. It is in this context that the work on modulation formats, contained in Chapter 3 of this thesis, was undertaken. The work investigates the proposed energy-efficient four-dimensional modulation formats. The work begins by studying a new visualisation technique for four dimensional modulation formats, akin to constellation diagrams. The work then carries out one of the first implementations of one such modulation format, polarisation-switched quadrature phase-shift keying (PS-QPSK). This thesis also studies two potential next-generation fibres, few-mode and hollow-core photonic band-gap fibre. Chapter 4 studies ways to experimentally quantify the nonlinearities in few-mode fibre and assess the potential benefits and limitations of such fibres. It carries out detailed experiments to measure the effects of stimulated Brillouin scattering, self-phase modulation and four-wave mixing and compares the results to numerical models, along with capacity limit calculations. Chapter 5 investigates hollow-core photonic band-gap fibre, where such fibres are predicted to have a low-loss minima at a wavelength of 2μm. To benefit from this potential low loss window requires the development of telecoms grade subsystems and components. The chapter will outline some of the development and characterisation of these components. The world's first wavelength division multiplexed (WDM) subsystem directly implemented at 2μm is presented along with WDM transmission over hollow-core photonic band-gap fibre at 2μm. References: [1]P. P. Mitra, J. B. Stark, Nature, 411, 1027-1030, 2001 [2] A. D. Ellis et al., JLT, 28, 423-433, 2010.
Resumo:
This dissertation examines the role of communications technology in social change. It examines secondary data on contemporary China arguing that many interpretations of events in China are unsuitable at best and at worst conceptually damages our understanding of social change in China. This is especially the case in media studies under the ‘democratic framework’. It proposes that there is an alternative framework in studying the media and social change. This alternative conceptual framework is termed a zone of interpretative development offering a means by which to discuss events that take place in a mediated environment. Taking a theoretical foundation using the philosophy of Mikhail Bakhtin this dissertation develops a platform with which to understand communication technology from an anthropological perspective. Three media events from contemporary China are examined. The first examines the Democracy Wall event and the implications of using a public sphere framework. The second case examines the phenomenon of the Grass Mud Horse, a symbol that has gained popular purchase as a humorous expression of political dissatisfaction and develops the problems seen in the first case but with some solutions. Using a modification of Lev Vygotskiĭ’s zone of proximal development this symbol is understood as an expression of the collective recognition of a shared experience. In the second example from the popular TV talent show contests in China further expressions of collective experience are introduced. With the evidence from these media events in contemporary China this dissertation proposes that we can understand certain modes of communication as occurring in a zone of interpretative development. This proposed anthropological feature of social change via communication and technology can fruitfully describe meaning-formation in society via the expression and recognition of shared experiences.
Resumo:
Major factors influencing food development and food marketing strategies in global market places at present can be attributable to the changing age structure of the population. The significant shifts in global age structure will inevitably lead to the number of people aged 60 reaching an all-time high of one billion by the year 2020. The rapidly growing population of ageing people globally represents a large, neglected and very much under-developed category within the Food Industry. The primary focus of this study was the integration of knowledge creation techniques at early NPD stages, for the development of market-oriented new health promoting foods for the ageing population. The methodology of this study was centered on an exploratory sequential mixed methods strategy. Stage one of the study involved in-depth semi-structured interviews with 16 Stakeholders to facilitate the need identification stage of the NPD process. The main outputs identified were the need for: the fortification of foods for a preventative nutrition approach, the development of foods that targeted age-related conditions such as cognitive, heart, gut and bone health, the integration of ageing compensatory packaging adaptations and the creation of marketing messages with an active lifestyle message. Stage two consisted of a market-oriented computer assisted NPD technique, a user centered design interaction (UCD) to integrate consumers as co-creators throughout the idea generation stage of the NPD process. The most important product attributes identified in this stage included: products targeted at brain and cognitive health, liquid based beverages, easy to use packaging with environmentally friendly elements, simplistic marketing with a clear focus on health not age and realistic health claims constructed with consumer friendly terminology. Finally, Stage three used an abbreviated means-end chain (MEC) analysis to complete the concept development stage of the NPD process. This stage identified commercial information that could be used by food firms for the development of positioning and communication strategies. Equally, the information generated could be of high strategic importance to governments, policy makers, health professionals and medical professionals. The values and goals listed in this stage included: better overall health, active lifestyle, optimum nutrition and wellbeing feelings. Overall, this research illustrated that knowledge creation techniques can assist firms in the development of market-oriented health promoting foods for the ageing population.