1 resultado para dating recommendation
em CORA - Cork Open Research Archive - University College Cork - Ireland
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (253)
- Aston University Research Archive (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (135)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (29)
- Center for Jewish History Digital Collections (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (36)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- Glasgow Theses Service (1)
- Harvard University (6)
- Helda - Digital Repository of University of Helsinki (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (4)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (6)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (6)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (5)
- Publishing Network for Geoscientific & Environmental Data (171)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (43)
- Queensland University of Technology - ePrints Archive (67)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio de la Universidad del Pacífico - PERU (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (9)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (8)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (2)
- Universitat de Girona, Spain (2)
- Université de Montréal (1)
- Université de Montréal, Canada (1)
- University of Michigan (15)
- University of Queensland eSpace - Australia (28)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
We consider the task of collaborative recommendation of photo-taking locations. We use datasets of geotagged photos. We map their locations to a location grid using a geohashing algorithm, resulting in a user x location implicit feedback matrix. Our improvements relative to previous work are twofold. First, we create virtual ratings by spreading users' preferences to neighbouring grid locations. This makes the assumption that users have some preference for locations close to the ones in which they take their photos. These virtual ratings help overcome the discrete nature of the geohashing. Second, we normalize the implicit frequency-based ratings to a 1-5 scale using a method that has been found to be useful in music recommendation algorithms. We demonstrate the advantages of our approach with new experiments that show large increases in hit rate and related metrics.