5 resultados para crystal chemistry
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis is focused on the synthesis and solid state analysis of carbohydrate derivatives, including many novel compounds. Although the synthetic chemistry surrounding carbohydrates is well established in the literature, the crystal chemistry of carbohydrates is less well studied. Therefore this research aims to improve understanding of the solid state properties of carbohydrate derivatives through gaining more information on their supramolecular bonding. Chapter One focuses on an introduction to the solid state of organic compounds, with a background to crystallisation, including issues that can arise during crystal growth. Chapter Two is based on glucopyranuronate derivatives which are understudied in terms of their solid state forms. This chapter reports on the formation of novel glucuronamides and utilising the functionality of the amide bond for crystallisation. TEMPO oxidation was completed to form glucopyranuronates by oxidation of the primary alcohol groups of glucosides to the carboxylic acid derivatives, to increase functionality for enhanced crystal growth. Chapter Three reports on the synthesis of glucopyranoside derivatives by O-glycosylation reactions and displays crystal structures, including a number of previously unsolved acetate protected and deprotected crystal structures. More complex glycoside derivatives were also researched in an aim to study the resultant supramolecular motifs. Chapter Four contains the synthesis of aryl cellobioside derivatives including the novel crystal structures that were solved for the acetate protected and deprotected compounds. Research was carried out to determine if 1-deoxycellodextrins could act as putative isostructures for cellulose. Our research displays the presence of isostructural references with 1-deoxycellotriose shown to be similar to cellulose III11, 1-deoxycellotetraose correlates with cellulose IV11 and 1-deoxycellopentose shows isostructurality similar to that of cellulose II. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project and relevant crystallographic information.
Resumo:
The majority of active pharmaceutical ingredients (APIs) are crystalline solids in their pure forms. Crystalline solids have definable morphologies, i.e. shape and size. Crystal morphology is determined by both the internal structure of the crystals and external factors during growth from solution. The morphology of a crystal batch can affect key processes during manufacturing. Companies generally accept whatever morphology the manufacturing process provides and deal with any subsequent problems by costly trouble‒shooting. Rational design of optimised morphologies for crystalline pharmaceutical solids would be a very significant technical and commercial advance. Chapter one introduces the concept of crystal nucleation and growth. The phenomenon of polymorphism alongside the causes and impact is discussed. A summary of the scope of instrumentation used in the investigation of crystal polymorphism and morphology, including crystal size distribution (CSD), is also included. Chapter two examines the research carried out during an exploration of the optimum crystallisation parameters of phenacetin. Following a morphological study, the impact this induces on particle density and flow properties is examined. The impact of impurities on the crystallisation properties of phenacetin is investigated. Significantly, the location of impurities within individual crystals is also studied. The third chapter describes an industrial collaboration looking at the resolution and polymorphic study of trometamol and lysine salts of ketoprofen and 2‒phenylpropionic acid (2‒PPA). Chapter four incorporates a solid state study on three separate compounds: 2‒chloro‒4‒nitroaniline, 4‒hydroxy‒N‒phenylbenzenesulfonamide and N‒acetyl‒D‒glucosamine‒6‒O‒sulfate. 2‒Chloro‒4‒nitroaniline and 4‒hydroxy‒N‒phenylbenzenesulfonamide both produced interesting, extreme morphologies which warranted further investigation as part of a collaborative study. Following a summarisation of results in chapter five, chapter six contains the full experimental details, incorporating spectral and other analytical data for all compounds synthesised during the course of the research.
Resumo:
The solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene is demonstrated to be a new, simple and versatile solid-state templating method for obtaining single-crystal micro- and nanocrystals of transition and valve metal oxides. The technique, when applied to Mo-containing organometallics N3P3[OC6H4CH2CN·Mo(CO)5]6 and N3P3[OC6H4CH2CN·Mo(CO)4 py]6, results in stand-alone and surface-deposited lamellar MoO3 single crystals, as determined by electron and atomic force microscopies and X-ray diffraction. The size and morphology of the resulting crystals can be tuned by the composition of the precursor. X-ray photoelectron and infrared spectroscopies indicate that the deposition of highly lamellar MoO3 directly on an oxidized (400 nm SiO2) surface or (100) single-crystal silicon surfaces yields a layered uniphasic single-crystal film formed by cluster diffusion on the surface during pyrolysis of the metal-carbonyl derivatives. For MoO3 in its layered form, this provides a new route to an important intercalation material for high energy density battery materials.
Resumo:
Surface modification of rutile TiO2 with extremely small SnO2 clusters gives rise to a great increase in its UV light activity for degradation of model organic water pollutants, while the effect is much smaller for anatase TiO2. This crystal form sensitivity is rationalized in terms of the difference in the electronic modification of TiO2 through the interfacial Sn−O−Ti bonds. The increase in the density of states near the conduction band minimum of rutile by hybridization with the SnO2 cluster levels intensifies the light absorption, but this is not seen with modified anatase. The electronic transition from the valence band to the conduction band causes the bulk-to-surface interfacial electron transfer to enhance charge separation. Further, electrons relaxed to the conduction minimum are smoothly transferred to O2 due to the action of the SnO2 species as an electron transfer promoter.
Resumo:
The crystal structure containing (+/-)-3-methyl-2-phenylbutyramide with salicylic acid is the first example of a kryptoracemate co-crystal. It exhibits the first temperature mediated reversible single-crystal to single-crystal transition between two kryptoracemate forms, in addition to crystallising in another, racemic, form. Theoretical calculations and structural analysis reveal that there are only small differences in both energy and packing arrangements between the three forms. These results suggest that co-crystals can be an opportunity to investigate kryptoracemate behaviour.