3 resultados para cord blood, IL-27
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Background An early objective biomarker to predict the severity of hypoxic-ischaemic encephalopathy (HIE) and identify infants suitable for intervention remains elusive. This thesis aims to progress metabolomic markers of HIE through a pipeline of biomarker discovery and validation by employing a novel untargeted mass spectrometry metabolomic method. Methodology Term infants with perinatal asphyxia were recruited, all having umbilical cord blood (UCB) drawn and biobanked within three hours of birth. HIE was defined by Sarnat score at 24hours and continuous multichannel-EEG. Infant neurodevelopment was assessed at 36-42 months using the Bayley Scales of Infant and Toddler Development Ed. III (BSID-III). Untargeted metabolomic analysis of UCB was performed using direct injection FT-ICR mass spectrometry (DI FT-ICR MS). Putative metabolite annotations and lipid classes were assigned and pathway analysis was performed. Results Untargeted metabolomic analysis: Thirty enrolled infants were diagnosed with HIE, including 17 mild, 8 moderate, and 5 severe cases. Pathway analysis revealed that ΔHIE was associated with a 50% and 75% perturbation of tryptophan and pyrimidine metabolism respectively, alongside alterations in amino acid pathways. Significant metabolite alterations were detected from six putatively identified lipid classes including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids and prenol lipids. Outcome prediction: Metabolite model scores significantly correlated with outcome R=0.429 (model A) and R=0.549 (model B) respectively. Model B demonstrates the potential to predict both severe outcome (AUROC of 0.915) and intact survival (AUROC of 0.800). The effect of haemolysis: On average 5% of polar and 1.5% of non-polar features were altered between paired haemolysed and clean samples. However unsupervised multivariate analysis concluded that the preanalytical variability introduced by haemolysis was negligible compared with the inherent biological inter-individual variability. Conclusion This research has employed untargeted metabolomics to identify potential early cord blood biomarkers of HIE and has performed the technical validation of previously proposed markers.
Resumo:
Hypoxic ischaemic encephalopathy (HIE) is a devastating neonatal condition which affects 2-3 per 1000 infants annually. The current gold standard of treatment - induced hypothermia, has the ability to reduce neonatal mortality and improve neonatal morbidity. However, to be effective it needs to be initiated within the therapeutic window which exists following initial insult until approximately 6 hours after birth. Current methods of assessment which are relied upon to identify infants with HIE are subjective and unreliable. To overcome this issue, an early and reliable biomarker of HIE severity must be identified. MicroRNA (miRNA) are a class of small non-coding RNA molecules which have potential as biomarkers of disease state and potential therapeutic targets. These tiny molecules can modulate gene expression by inhibiting translation of messenger RNA (mRNA) and as a result, can regulate protein synthesis. These miRNA are understood to be released into the circulation during cellular stress, where they are highly stable and relatively easy to quantify. Therefore, these miRNAs may be ideal candidates for biomarkers of HIE severity and may aid in directing the clinical management of these infants. By using both transcriptomic and proteomic approaches to analyse the expression of miRNAs and their potential targets in the umbilical cord blood, I have confirmed that infants with perinatal asphyxia and HIE have a significantly different UCB miRNA signature compared to UCB samples from healthy controls. Finally, I have identified and investigated 2 individual miRNAs; both of which show some potential as classifiers of HIE severity and predictors of long term outcome, particularly when coupled with their downstream targets. While this work will need to be validated and expanded in a new and larger cohort of infants, it suggests the potential of miRNA as biomarkers of neonatal pathological conditions such as HIE.
Resumo:
Objective: The effect of work on blood pressure (BP) in a general population with appropriate adjustment for confounders is not well defined. High job control has been found to be associated with lower BP and with nocturnal BP dipping. However, with older workers this may be compromised and has not been studied extensively. Methods: A cross-sectional study was carried out on a primary care-based sample (N=2047) aged 50–69 years. Data were collected on sociodemographic factors, medication, clinic, and ambulatory blood pressure. Job control was measured using two scales from the Copenhagen Psychosocial Questionnaire (COPSOQ) (possibility for development and influence at work). Nocturnal systolic BP (SBP) dipping was the reduction in SBP from day- to night-time using ambulatory SBP readings. Results: In general, BP increased with age, male gender, and higher body mass index. Workers with high influence at work and high possibility for development were more likely to have high asleep SBP [odds ratio (OR) 2.13, 95% confidence interval (95% CI) 1.05–4.34, P=0.04], (OR 2.27, 95% CI 1.11–4.66, P=0.03) respectively. Influence at work and awake BP were inversely associated: awake SBP (OR 2.44, 95% CI 1.35–4.41, P<0.01), awake DBP (OR 2.42, 95% CI 1.24–4.72, P=0.01). No association was seen between job control and nocturnal SBP dipping. Conclusion: Older workers with high job control may be more at risk of cardiovascular disease resulting from high day- and night-time BP with no evidence of nocturnal dipping.