6 resultados para conversion efficiency

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solar Energy is a clean and abundant energy source that can help reduce reliance on fossil fuels around which questions still persist about their contribution to climate and long-term availability. Monolithic triple-junction solar cells are currently the state of the art photovoltaic devices with champion cell efficiencies exceeding 40%, but their ultimate efficiency is restricted by the current-matching constraint of series-connected cells. The objective of this thesis was to investigate the use of solar cells with lattice constants equal to InP in order to reduce the constraint of current matching in multi-junction solar cells. This was addressed by two approaches: Firstly, the formation of mechanically stacked solar cells (MSSC) was investigated through the addition of separate connections to individual cells that make up a multi-junction device. An electrical and optical modelling approach identified separately connected InGaAs bottom cells stacked under dual-junction GaAs based top cells as a route to high efficiency. An InGaAs solar cell was fabricated on an InP substrate with a measured 1-Sun conversion efficiency of 9.3%. A comparative study of adhesives found benzocyclobutene to be the most suitable for bonding component cells in a mechanically stacked configuration owing to its higher thermal conductivity and refractive index when compared to other candidate adhesives. A flip-chip process was developed to bond single-junction GaAs and InGaAs cells with a measured 4-terminal MSSC efficiency of 25.2% under 1-Sun conditions. Additionally, a novel InAlAs solar cell was identified, which can be used to provide an alternative to the well established GaAs solar cell. As wide bandgap InAlAs solar cells have not been extensively investigated for use in photovoltaics, single-junction cells were fabricated and their properties relevant to PV operation analysed. Minority carrier diffusion lengths in the micrometre range were extracted, confirming InAlAs as a suitable material for use in III-V solar cells, and a 1-Sun conversion efficiency of 6.6% measured for cells with 800 nm thick absorber layers. Given the cost and small diameter of commercially available InP wafers, InGaAs and InAlAs solar cells were fabricated on alternative substrates, namely GaAs. As a first demonstration the lattice constant of a GaAs substrate was graded to InP using an InxGa1-xAs metamorphic buffer layer onto which cells were grown. This was the first demonstration of an InAlAs solar cell on an alternative substrate and an initial step towards fabricating these cells on Si. The results presented offer a route to developing multi-junction solar cell devices based on the InP lattice parameter, thus extending the range of available bandgaps for high efficiency cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Extracting wave energy from seas has been proven to be very difficult although various technologies have been developed since 1970s. Among the proposed technologies, only few of them have been actually progressed to the advanced stages such as sea trials or pre-commercial sea trial and engineering. One critical question may be how we can design an efficient wave energy converter or how the efficiency of a wave energy converter can be improved using optimal and control technologies, because higher energy conversion efficiency for a wave energy converter is always pursued and it mainly decides the cost of the wave energy production. In this first part of the investigation, some conventional optimal and control technologies for improving wave energy conversion are examined in a form of more physical meanings, rather than the purely complex mathematical expressions, in which it is hoped to clarify some confusions in the development and the terminologies of the technologies and to help to understand the physics behind the optimal and control technologies. As a result of the understanding of the physics and the principles of the optima, a new latching technology is proposed, in which the latching duration is simply calculated from the wave period, rather than based on the future information/prediction, hence the technology could remove one of the technical barriers in implementing this control technology. From the examples given in the context, this new latching control technology can achieve a phase optimum in regular waves, and hence significantly improve wave energy conversion. Further development on this latching control technologies can be found in the second part of the investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wireless sensor networks (WSN) are becoming widely adopted for many applications including complicated tasks like building energy management. However, one major concern for WSN technologies is the short lifetime and high maintenance cost due to the limited battery energy. One of the solutions is to scavenge ambient energy, which is then rectified to power the WSN. The objective of this thesis was to investigate the feasibility of an ultra-low energy consumption power management system suitable for harvesting sub-mW photovoltaic and thermoelectric energy to power WSNs. To achieve this goal, energy harvesting system architectures have been analyzed. Detailed analysis of energy storage units (ESU) have led to an innovative ESU solution for the target applications. Battery-less, long-lifetime ESU and its associated power management circuitry, including fast-charge circuit, self-start circuit, output voltage regulation circuit and hybrid ESU, using a combination of super-capacitor and thin film battery, were developed to achieve continuous operation of energy harvester. Low start-up voltage DC/DC converters have been developed for 1mW level thermoelectric energy harvesting. The novel method of altering thermoelectric generator (TEG) configuration in order to match impedance has been verified in this work. Novel maximum power point tracking (MPPT) circuits, exploring the fractional open circuit voltage method, were particularly developed to suit the sub-1mW photovoltaic energy harvesting applications. The MPPT energy model has been developed and verified against both SPICE simulation and implemented prototypes. Both indoor light and thermoelectric energy harvesting methods proposed in this thesis have been implemented into prototype devices. The improved indoor light energy harvester prototype demonstrates 81% MPPT conversion efficiency with 0.5mW input power. This important improvement makes light energy harvesting from small energy sources (i.e. credit card size solar panel in 500lux indoor lighting conditions) a feasible approach. The 50mm × 54mm thermoelectric energy harvester prototype generates 0.95mW when placed on a 60oC heat source with 28% conversion efficiency. Both prototypes can be used to continuously power WSN for building energy management applications in typical office building environment. In addition to the hardware development, a comprehensive system energy model has been developed. This system energy model not only can be used to predict the available and consumed energy based on real-world ambient conditions, but also can be employed to optimize the system design and configuration. This energy model has been verified by indoor photovoltaic energy harvesting system prototypes in long-term deployed experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The power output of dual-junction mechanically stacked solar cells comprising different sub-cell materials in a terrestrial concentrating photovoltaic module has been evaluated. The ideal bandgap combination of both cells in a stack was found using EtaOpt. A combination of 1.4 eV and 0.7 eV has been found to produce the highest photovoltaic conversion efficiency under the AM1.5 Direct Solar Spectrum with x500 concentration. As EtaOpt does not consider the absorption profile of solar cell materials; the practical power output per unit area of a dual junction mechanically stacked solar cell has been modelled considering the optical absorption co-efficients and thicknesses of the individual solar cells. The model considered a GaAs top cell and a Ge, GaSb, Ga0.47In0.53As or Si bottom cell. It was found that GaSb gives the highest power contribution as a bottom cell in a dual junction configuration followed by Ge and GaInAs. While the additional power provided by a Si bottom cell is less than these it remains a suitable candidate for a bottom cell owing to its lower cost

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hysteresis and multistability are fundamental phenomena of driven nonlinear oscillators, which, however, restrict many applications such as mechanical energy harvesting. We introduce an electrical control mechanism to switch from the low to the high energy output branch of a nonlinear energy harvester by exploiting the strong interplay between its electrical and mechanical degrees of freedom. This method improves the energy conversion efficiency over a wide bandwidth in a frequency-amplitude-varying environment using only a small energy budget. The underlying effect is independent of the device scale and the transduction method and is explained using a modified Duffing oscillator model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with inductive charging of electric vehicle batteries. Rectified power form the 50/60 Hz utility feeds a dc-ac converter which delivers high-frequency ac power to the electric vehicle inductive coupling inlet. The inlet configuration has been defined by the Society of Automotive Engineers in Recommended Practice J-1773. This thesis studies converter topologies related to the series resonant converter. When coupled to the vehicle inlet, the frequency-controlled series-resonant converter results in a capacitively-filtered series-parallel LCLC (SP-LCLC) resonant converter topology with zero voltage switching and many other desirable features. A novel time-domain transformation analysis, termed Modal Analysis, is developed, using a state variable transformation, to analyze and characterize this multi-resonant fourth-orderconverter. Next, Fundamental Mode Approximation (FMA) Analysis, based on a voltage-source model of the load, and its novel extension, Rectifier-Compensated FMA (RCFMA) Analysis, are developed and applied to the SP-LCLC converter. The RCFMA Analysis is a simpler and more intuitive analysis than the Modal Analysis, and provides a relatively accurate closed-form solution for the converter behavior. Phase control of the SP-LCLC converter is investigated as a control option. FMA and RCFMA Analyses are used for detailed characterization. The analyses identify areas of operation, which are also validated experimentally, where it is advantageous to phase control the converter. A novel hybrid control scheme is proposed which integrates frequency and phase control and achieves reduced operating frequency range and improved partial-load efficiency. The phase-controlled SP-LCLC converter can also be configured with a parallel load and is an excellent option for the application. The resulting topology implements soft-switching over the entire load range and has high full-load and partial-load efficiencies. RCFMA Analysis is used to analyze and characterize the new converter topology, and good correlation is shown with experimental results. Finally, a novel single-stage power-factor-corrected ac-dc converter is introduced, which uses the current-source characteristic of the SP-LCLC topology to provide power factor correction over a wide output power range from zero to full load. This converter exhibits all the advantageous characteristics of its dc-dc counterpart, with a reduced parts count and cost. Simulation and experimental results verify the operation of the new converter.