6 resultados para continuous heart rate monitoring

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article examines some preliminary tests which were performed in order to evaluate the best electrode configuration (width and spacing) for cell culture analyses. Biochips packaged with indium tin oxide (ITO) interdigitated electrodes (IDEs) were used to perform impedance measurements on A549 cells cultured on the surface of the biochip. Several tests were carried out using a 10 mM solution of Sodium Chloride (NaCl), cell medium and the cell culture itself to characterize some of the configurations already fabricated in the facilities at Tyndall National Institute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain injury due to lack of oxygen or impaired blood flow around the time of birth, may cause long term neurological dysfunction or death in severe cases. The treatments need to be initiated as soon as possible and tailored according to the nature of the injury to achieve best outcomes. The Electroencephalogram (EEG) currently provides the best insight into neurological activities. However, its interpretation presents formidable challenge for the neurophsiologists. Moreover, such expertise is not widely available particularly around the clock in a typical busy Neonatal Intensive Care Unit (NICU). Therefore, an automated computerized system for detecting and grading the severity of brain injuries could be of great help for medical staff to diagnose and then initiate on-time treatments. In this study, automated systems for detection of neonatal seizures and grading the severity of Hypoxic-Ischemic Encephalopathy (HIE) using EEG and Heart Rate (HR) signals are presented. It is well known that there is a lot of contextual and temporal information present in the EEG and HR signals if examined at longer time scale. The systems developed in the past, exploited this information either at very early stage of the system without any intelligent block or at very later stage where presence of such information is much reduced. This work has particularly focused on the development of a system that can incorporate the contextual information at the middle (classifier) level. This is achieved by using dynamic classifiers that are able to process the sequences of feature vectors rather than only one feature vector at a time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

User Quality of Experience (QoE) is a subjective entity and difficult to measure. One important aspect of it, User Experience (UX), corresponds to the sensory and emotional state of a user. For a user interacting through a User Interface (UI), precise information on how they are using the UI can contribute to understanding their UX, and thereby understanding their QoE. As well as a user’s use of the UI such as clicking, scrolling, touching, or selecting, other real-time digital information about the user such as from smart phone sensors (e.g. accelerometer, light level) and physiological sensors (e.g. heart rate, ECG, EEG) could contribute to understanding UX. Baran is a framework that is designed to capture, record, manage and analyse the User Digital Imprint (UDI) which, is the data structure containing all user context information. Baran simplifies the process of collecting experimental information in Human and Computer Interaction (HCI) studies, by recording comprehensive real-time data for any UI experiment, and making the data available as a standard UDI data structure. This paper presents an overview of the Baran framework, and provides an example of its use to record user interaction and perform some basic analysis of the interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At a time when technological advances are providing new sensor capabilities, novel network capabilities, long-range communications technologies and data interpreting and delivery formats via the World Wide Web, we never before had such opportunities to sense and analyse the environment around us. However, the challenges exist. While measurement and detection of environmental pollutants can be successful under laboratory-controlled conditions, continuous in-situ monitoring remains one of the most challenging aspects of environmental sensing. This paper describes the development and test of a multi-sensor heterogeneous real-time water monitoring system. A multi-sensor system was deployed in the River Lee, County Cork, Ireland to monitor water quality parameters such as pH, temperature, conductivity, turbidity and dissolved oxygen. The R. Lee comprises of a tidal water system that provides an interesting test site to monitor. The multi-sensor system set-up is described and results of the sensor deployment and the various challenges are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a by-product of the ‘information revolution’ which is currently unfolding, lifetimes of man (and indeed computer) hours are being allocated for the automated and intelligent interpretation of data. This is particularly true in medical and clinical settings, where research into machine-assisted diagnosis of physiological conditions gains momentum daily. Of the conditions which have been addressed, however, automated classification of allergy has not been investigated, even though the numbers of allergic persons are rising, and undiagnosed allergies are most likely to elicit fatal consequences. On the basis of the observations of allergists who conduct oral food challenges (OFCs), activity-based analyses of allergy tests were performed. Algorithms were investigated and validated by a pilot study which verified that accelerometer-based inquiry of human movements is particularly well-suited for objective appraisal of activity. However, when these analyses were applied to OFCs, accelerometer-based investigations were found to provide very poor separation between allergic and non-allergic persons, and it was concluded that the avenues explored in this thesis are inadequate for the classification of allergy. Heart rate variability (HRV) analysis is known to provide very significant diagnostic information for many conditions. Owing to this, electrocardiograms (ECGs) were recorded during OFCs for the purpose of assessing the effect that allergy induces on HRV features. It was found that with appropriate analysis, excellent separation between allergic and nonallergic subjects can be obtained. These results were, however, obtained with manual QRS annotations, and these are not a viable methodology for real-time diagnostic applications. Even so, this was the first work which has categorically correlated changes in HRV features to the onset of allergic events, and manual annotations yield undeniable affirmation of this. Fostered by the successful results which were obtained with manual classifications, automatic QRS detection algorithms were investigated to facilitate the fully automated classification of allergy. The results which were obtained by this process are very promising. Most importantly, the work that is presented in this thesis did not obtain any false positive classifications. This is a most desirable result for OFC classification, as it allows complete confidence to be attributed to classifications of allergy. Furthermore, these results could be particularly advantageous in clinical settings, as machine-based classification can detect the onset of allergy which can allow for early termination of OFCs. Consequently, machine-based monitoring of OFCs has in this work been shown to possess the capacity to significantly and safely advance the current state of clinical art of allergy diagnosis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Up to 10% of infants require stabilisation during transition to extrauterine life. Enhanced monitoring of cardiorespiratory parameters during this time may improve stabilisation outcomes. In addition, technology may facilitate improved preparation for delivery room stabilisation as well as NICU procedures, through educational techniques. Aim To improve infant care 1) before birth via improved training, 2) during stabilisation via enhanced physiological monitoring and improved practice, and 3) after delivery, in the neonatal intensive care unit (NICU), via improved procedural care. Methods A multifaceted approach was utilised including; a combination of questionnaire based surveys, mannequin-based investigations, prospective observational investigations, and a randomised controlled trial involving preterm infants less than 32 weeks in the delivery room. Forms of technology utilised included; different types of mannequins including a CO2 producing mannequin, qualitative end tidal CO2 (EtCO2) detectors, a bespoke quantitative EtCO2 detector, and annotated videos of infant stabilisation as well as NICU procedures Results Manual ventilation improved with the use of EtCO2 detection, and was positively assessed by trainees. Quantitative EtCO2 detection in the delivery room is feasible, EtCO2 increased over the first 4 minutes of life in preterm infants, and EtCO2 was higher in preterm infants who were intubated. Current methods of heart rate assessment were found to be unreliable. Electrocardiography (ECG) application warrants further evaluation. Perfusion index (PI) monitoring utilised in the delivery room was feasible. Video recording technology was utilised in several ways. This technology has many potential benefits, including debriefing and coaching in procedural healthcare, and warrants further evaluation. Parents would welcome the introduction of webcams in the NICU. Conclusions I have evaluated new methods of improving infant care before, during, and after stabilisation in the DR. Specifically, I have developed novel educational tools to facilitate training, and evaluated EtCO2, PI, and ECG during infant stabilisation. I have identified barriers in using webcams in the NICU, to now be addressed prior to webcam implementation.