6 resultados para conduction bands

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

First-principles electronic structure methods are used to predict the mobility of n-type carrier scattering in strained SiGe. We consider the effects of strain on the electron-phonon deformation potentials and the alloy scattering parameters. We calculate the electron-phonon matrix elements and fit them up to second order in strain. We find, as expected, that the main effect of strain on mobility comes from the breaking of the degeneracy of the six Δ and L valleys, and the choice of transport direction. The non-linear effects on the electron-phonon coupling of the Δ valley due to shear strain are found to reduce the mobility of Si-like SiGe by 50% per % strain. We find increases in mobility between 2 and 11 times that of unstrained SiGe for certain fixed Ge compositions, which should enhance the thermoelectric figure of merit in the same order, and could be important for piezoresistive applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

First-principles electronic structure methods are used to predict the rate of n-type carrier scattering due to phonons in highly-strained Ge. We show that strains achievable in nanoscale structures, where Ge becomes a direct bandgap semiconductor, cause the phonon-limited mobility to be enhanced by hundreds of times that of unstrained Ge, and over a thousand times that of Si. This makes highly tensile strained Ge a most promising material for the construction of channels in CMOS devices, as well as for Si-based photonic applications. Biaxial (001) strain achieves mobility enhancements of 100 to 1000 with strains over 2%. Low temperature mobility can be increased by even larger factors. Second order terms in the deformation potential of the Gamma valley are found to be important in this mobility enhancement. Although they are modified by shifts in the conduction band valleys, which are caused by carrier quantum confinement, these mobility enhancements persist in strained nanostructures down to sizes of 20 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study I examine the development of three inclusive music bands in Cork city. Derived from Jellison’s research on inclusive music education, inclusive music bands involve students with disabilities coming together with typically developing peers to make and learn music that is meaningful (Jellison, 2012). As part of this study, I established three inclusive music bands to address the lack of inclusive music making and learning experiences in Cork city. Each of these bands evolved and adapted in order to be socio-culturally relevant within formal and informal settings: Circles (community education band), Till 4 (secondary school band) and Mish Mash (third level and community band). I integrated Digital Musical Instruments into the three bands, in order to ensure access to music making and learning for band members with profound physical disabilities. Digital Musical Instruments are electronic music devices that facilitate active music making with minimal movement. This is the first study in Ireland to examine the experiences of inclusive music making and learning using Digital Musical Instruments. I propose that the integration of Digital Musical Instruments into inclusive music bands has the potential to further the equality and social justice agenda in music education in Ireland. In this study, I employed qualitative research methodology, incorporating participatory action research methodology and case study design. In this thesis I reveal the experiences of being involved in an inclusive music band in Cork city. I particularly focus on examining whether the use of this technology enhances meaningful music making and learning experiences for members with disabilities within inclusive environments. To both inform and understand the person centered and adaptable nature of these inclusive bands, I draw theoretical insights from Sen’s Capabilities Approach and Deleuze and Guatarri’s Rhizome Theory. Supported by descriptive narrative from research participants and an indepth examination of literature, I discover the optimum conditions and associated challenges of inclusive music practice in Cork city.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the results of the on-body experimental tests of a set of four planar differential antennas, originated by design variations of radiating elements with the same shape and characterized by the potential for covering wide and narrow bands. All the antenna designs have been implemented on low-cost FR4 substrate and characterized experimentally through on-body measurements. The results show the impact of the proximity to the human body on antenna performance and the opportunities in terms of potential coverage of wide and narrow bands for future ad hoc designs and implementations through wearable substrates targeting on-body and off-body communication and sensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. It has been shown that the quality of treatment result obtained with fixed appliances is much better than with removable appliances. Fixed appliances are, therefore, favoured by most orthodontists for treatment. The success of a fixed orthodontic appliance depends on the metal attachments (brackets and bands) being attached securely to the teeth so that they do not become loose during treatment. Brackets are usually attached to the front and side teeth, whereas bands (metal rings that go round the teeth) are more commonly used on the back teeth (molars). A number of adhesives are available to attach bands to teeth and it is important to understand which group of adhesives bond most reliably, as well as reducing or preventing dental decay during the treatment period. :Objectives: To evaluate the effectiveness of the adhesives used to attach bands to teeth during fixed appliance treatment, in terms of: (1) how often the bands come off during treatment; and (2) whether they protect the banded teeth against decay during fixed appliance treatment. Search methods: The following electronic databases were searched: Cochrane Oral Health's Trials Register (searched 2 June 2016), Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 5) in the Cochrane Library (searched 2 June 2016), MEDLINE Ovid (1946 to 2 June 2016) and EMBASE Ovid (1980 to 2 June 2016). We searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Selection criteria: Randomised and controlled clinical trials (RCTs and CCTs) (including split-mouth studies) of adhesives used to attach orthodontic bands to molar teeth were selected. Patients with full arch fixed orthodontic appliance(s) who had bands attached to molars were included. Data collection and analysis: All review authors were involved in study selection, validity assessment and data extraction without blinding to the authors, adhesives used or results obtained. All disagreements were resolved by discussion. Main results: Five RCTs and three CCTs were identified as meeting the review's inclusion criteria. All the included trials were of split-mouth design. Four trials compared chemically cured zinc phosphate and chemically cured glass ionomer; three trials compared chemically cured glass ionomer cement with light cured compomer; one trial compared chemically cured glass ionomer with a chemically cured glass phosphonate. Data analysis was often inappropriate within the studies meeting the inclusion criteria. Authors' conclusions: There is insufficient high quality evidence with regard to the most effective adhesive for attaching orthodontic bands to molar teeth. Further RCTs are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the electrical transport properties of Au-seeded germanium nanowires with radii ranging from 11 to 80 nm at ambient conditions. We found a non-trivial dependence of the electrical conductivity, mobility and carrier density on the radius size. In particular, two regimes were identified for large (lightly doped) and small (stronger doped) nanowires in which the charge-carrier drift is dominated by electron-phonon and ionized-impurity scattering, respectively. This goes in hand with the finding that the electrostatic properties for radii below ca. 37 nm have quasi one-dimensional character as reflected by the extracted screening lengths.