2 resultados para computerized electrocardiography
em CORA - Cork Open Research Archive - University College Cork - Ireland
Improving the care of preterm infants: before, during, and after, stabilisation in the delivery room
Resumo:
Introduction Up to 10% of infants require stabilisation during transition to extrauterine life. Enhanced monitoring of cardiorespiratory parameters during this time may improve stabilisation outcomes. In addition, technology may facilitate improved preparation for delivery room stabilisation as well as NICU procedures, through educational techniques. Aim To improve infant care 1) before birth via improved training, 2) during stabilisation via enhanced physiological monitoring and improved practice, and 3) after delivery, in the neonatal intensive care unit (NICU), via improved procedural care. Methods A multifaceted approach was utilised including; a combination of questionnaire based surveys, mannequin-based investigations, prospective observational investigations, and a randomised controlled trial involving preterm infants less than 32 weeks in the delivery room. Forms of technology utilised included; different types of mannequins including a CO2 producing mannequin, qualitative end tidal CO2 (EtCO2) detectors, a bespoke quantitative EtCO2 detector, and annotated videos of infant stabilisation as well as NICU procedures Results Manual ventilation improved with the use of EtCO2 detection, and was positively assessed by trainees. Quantitative EtCO2 detection in the delivery room is feasible, EtCO2 increased over the first 4 minutes of life in preterm infants, and EtCO2 was higher in preterm infants who were intubated. Current methods of heart rate assessment were found to be unreliable. Electrocardiography (ECG) application warrants further evaluation. Perfusion index (PI) monitoring utilised in the delivery room was feasible. Video recording technology was utilised in several ways. This technology has many potential benefits, including debriefing and coaching in procedural healthcare, and warrants further evaluation. Parents would welcome the introduction of webcams in the NICU. Conclusions I have evaluated new methods of improving infant care before, during, and after stabilisation in the DR. Specifically, I have developed novel educational tools to facilitate training, and evaluated EtCO2, PI, and ECG during infant stabilisation. I have identified barriers in using webcams in the NICU, to now be addressed prior to webcam implementation.
Resumo:
Brain injury due to lack of oxygen or impaired blood flow around the time of birth, may cause long term neurological dysfunction or death in severe cases. The treatments need to be initiated as soon as possible and tailored according to the nature of the injury to achieve best outcomes. The Electroencephalogram (EEG) currently provides the best insight into neurological activities. However, its interpretation presents formidable challenge for the neurophsiologists. Moreover, such expertise is not widely available particularly around the clock in a typical busy Neonatal Intensive Care Unit (NICU). Therefore, an automated computerized system for detecting and grading the severity of brain injuries could be of great help for medical staff to diagnose and then initiate on-time treatments. In this study, automated systems for detection of neonatal seizures and grading the severity of Hypoxic-Ischemic Encephalopathy (HIE) using EEG and Heart Rate (HR) signals are presented. It is well known that there is a lot of contextual and temporal information present in the EEG and HR signals if examined at longer time scale. The systems developed in the past, exploited this information either at very early stage of the system without any intelligent block or at very later stage where presence of such information is much reduced. This work has particularly focused on the development of a system that can incorporate the contextual information at the middle (classifier) level. This is achieved by using dynamic classifiers that are able to process the sequences of feature vectors rather than only one feature vector at a time.