6 resultados para computer languages
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Buried heat sources can be investigated by examining thermal infrared images and comparing these with the results of theoretical models which predict the thermal anomaly a given heat source may generate. Key factors influencing surface temperature include the geometry and temperature of the heat source, the surface meteorological environment, and the thermal conductivity and anisotropy of the rock. In general, a geothermal heat flux of greater than 2% of solar insolation is required to produce a detectable thermal anomaly in a thermal infrared image. A heat source of, for example, 2-300K greater than the average surface temperature must be a t depth shallower than 50m for the detection of the anomaly in a thermal infrared image, for typical terrestrial conditions. Atmospheric factors are of critical importance. While the mean atmospheric temperature has little significance, the convection is a dominant factor, and can act to swamp the thermal signature entirely. Given a steady state heat source that produces a detectable thermal anomaly, it is possible to loosely constrain the physical properties of the heat source and surrounding rock, using the surface thermal anomaly as a basis. The success of this technique is highly dependent on the degree to which the physical properties of the host rock are known. Important parameters include the surface thermal properties and thermal conductivity of the rock. Modelling of transient thermal situations was carried out, to assess the effect of time dependant thermal fluxes. One-dimensional finite element models can be readily and accurately applied to the investigation of diurnal heat flow, as with thermal inertia models. Diurnal thermal models of environments on Earth, the Moon and Mars were carried out using finite elements and found to be consistent with published measurements. The heat flow from an injection of hot lava into a near surface lava tube was considered. While this approach was useful for study, and long term monitoring in inhospitable areas, it was found to have little hazard warning utility, as the time taken for the thermal energy to propagate to the surface in dry rock (several months) in very long. The resolution of the thermal infrared imaging system is an important factor. Presently available satellite based systems such as Landsat (resolution of 120m) are inadequate for detailed study of geothermal anomalies. Airborne systems, such as TIMS (variable resolution of 3-6m) are much more useful for discriminating small buried heat sources. Planned improvements in the resolution of satellite based systems will broaden the potential for application of the techniques developed in this thesis. It is important to note, however, that adequate spatial resolution is a necessary but not sufficient condition for successful application of these techniques.
Resumo:
A computer model has been developed to optimize the performance of a 50kWp photovoltaic system which supplies electrical energy to a dairy farm at Fota Island in Cork Harbour. Optimization of the system involves maximising the efficiency and increasing the performance and reliability of each hardware unit. The model accepts horizontal insolation, ambient temperature, wind speed, wind direction and load demand as inputs. An optimization program uses the computer model to simulate the optimum operating conditions. From this analysis, criteria are established which are used to improve the photovoltaic system operation. This thesis describes the model concepts, the model implementation and the model verification procedures used during development. It also describes the techniques which are used during system optimization. The software, which is written in FORTRAN, is structured in modular units to provide logical and efficient programming. These modular units may also be used in the modelling and optimization of other photovoltaic systems.
Resumo:
An aim of proactive risk management strategies is the timely identification of safety related risks. One way to achieve this is by deploying early warning systems. Early warning systems aim to provide useful information on the presence of potential threats to the system, the level of vulnerability of a system, or both of these, in a timely manner. This information can then be used to take proactive safety measures. The United Nation’s has recommended that any early warning system need to have four essential elements, which are the risk knowledge element, a monitoring and warning service, dissemination and communication and a response capability. This research deals with the risk knowledge element of an early warning system. The risk knowledge element of an early warning system contains models of possible accident scenarios. These accident scenarios are created by using hazard analysis techniques, which are categorised as traditional and contemporary. The assumption in traditional hazard analysis techniques is that accidents are occurred due to a sequence of events, whereas, the assumption of contemporary hazard analysis techniques is that safety is an emergent property of complex systems. The problem is that there is no availability of a software editor which can be used by analysts to create models of accident scenarios based on contemporary hazard analysis techniques and generate computer code that represent the models at the same time. This research aims to enhance the process of generating computer code based on graphical models that associate early warning signs and causal factors to a hazard, based on contemporary hazard analyses techniques. For this purpose, the thesis investigates the use of Domain Specific Modeling (DSM) technologies. The contributions of this thesis is the design and development of a set of three graphical Domain Specific Modeling languages (DSML)s, that when combined together, provide all of the necessary constructs that will enable safety experts and practitioners to conduct hazard and early warning analysis based on a contemporary hazard analysis approach. The languages represent those elements and relations necessary to define accident scenarios and their associated early warning signs. The three DSMLs were incorporated in to a prototype software editor that enables safety scientists and practitioners to create and edit hazard and early warning analysis models in a usable manner and as a result to generate executable code automatically. This research proves that the DSM technologies can be used to develop a set of three DSMLs which can allow user to conduct hazard and early warning analysis in more usable manner. Furthermore, the three DSMLs and their dedicated editor, which are presented in this thesis, may provide a significant enhancement to the process of creating the risk knowledge element of computer based early warning systems.
Resumo:
The topic of this thesis is impulsivity. The meaning and measurement of impulse control is explored, with a particular focus on forensic settings. Impulsivity is central to many areas of psychology; it is one of the most common diagnostic criteria of mental disorders and is fundamental to the understanding of forensic personalities. Despite this widespread importance there is little agreement as to the definition or structure of impulsivity, and its measurement is fraught with difficulty owing to a reliance on self-report methods. This research aims to address this problem by investigating the viability of using simple computerised cognitive performance tasks as complementary components of a multi-method assessment strategy for impulse control. Ultimately, the usefulness of this measurement strategy for a forensic sample is assessed. Impulsivity is found to be a multifaceted construct comprised of a constellation of distinct sub-dimensions. Computerised cognitive performance tasks are valid and reliable measures that can assess impulsivity at a neuronal level. Self-report and performance task methods assess distinct components of impulse control and, for the optimal assessment of impulse control, a multi-method battery of self-report and performance task measures is advocated. Such a battery is shown to have demonstrated utility in a forensic sample, and recommendations for forensic assessment in the Irish context are discussed.
Resumo:
The retrofitting of existing buildings for decreased energy usage, through increased energy efficiency and for minimum carbon dioxide emissions throughout their remaining lifetime is a major area of research. This research area requires development to provide building professionals with more efficient building retrofit solution determination tools. The overarching objective of this research is to develop a tool for this purpose through the implementation of a prescribed methodology. This has been achieved in three distinct steps. Firstly, the concept of using the degree-days modelling method as an adequate means of basing retrofit decision upon was analysed and the results illustrated that the concept had merit. Secondly, the concept of combining the degree-days modelling method and the Genetic Algorithms optimisation method is investigated as a method of determining optimal thermal energy retrofit solutions. Thirdly, the combination of the degree-days modelling method and the Genetic Algorithms optimisation method were packaged into a building retrofit decision-support tool and named BRaSS (Building Retrofit Support Software). The results demonstrate clearly that, fundamental building information, simplified occupancy profiles and weather data used in a static simulation modelling method is a sufficient and adequate means to base retrofitting decisions upon. The results also show that basing retrofit decisions upon energy analysis results are the best means to guide a retrofit project and also to achieve results which are optimum for a particular building. The results also indicate that the building retrofit decision-support tool, BRaSS, is an effective method to determine optimum thermal energy retrofit solutions.
Resumo:
The influence of communication technology on group decision-making has been examined in many studies. But the findings are inconsistent. Some studies showed a positive effect on decision quality, other studies have shown that communication technology makes the decision even worse. One possible explanation for these different findings could be the use of different Group Decision Support Systems (GDSS) in these studies, with some GDSS better fitting to the given task than others and with different sets of functions. This paper outlines an approach with an information system solely designed to examine the effect of (1) anonymity, (2) voting and (3) blind picking on decision quality, discussion quality and perceived quality of information.