2 resultados para communication consequences of downsizing
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Gut microbiota colonization is a key event for host physiology that occurs early in life. Disruption of this process leads to altered brain development which ultimately manifests as changes in brain function and behaviour in adulthood. Studies using germ-free mice highlight the extreme impact on brain health that results from life without commensal microbes, however the impact of microbiota disturbances occurring in adulthood is less studied. To this end, we depleted the gut microbiota of 10-week-old male Sprague Dawley rats via chronic antibiotic treatment. Following this marked, sustained depletion of the gut bacteria, we investigated behavioural and molecular hallmarks of gut-brain communication. Our results reveal that depletion of the gut microbiota during adulthood results in deficits in spatial memory as tested by Morris water maze, increased visceral sensitivity and a greater display of depressive-like behaviours in the forced swim test. In tandem with these clear behavioural alterations we found change in altered CNS serotonin concentration along with changes in the mRNA levels of corticotrophin releasing hormone receptor 1 and glucocorticoid receptor. Additionally, we found changes in the expression of BDNF, a hallmark of altered microbiota-gut-brain axis signaling. In summary, this model of antibiotic-induced depletion of the gut microbiota can be used for future studies interested in the impact of the gut microbiota on host health without the confounding developmental influence of early-life microbial alterations.
Resumo:
Maternal infection during pregnancy increases the risk of several neuropsychiatric disorders later in life, many of which have a component of dopaminergic (DA) dysfunction, including schizophrenia, autism spectrum disorders (ASD), and attention deficit hyperactivity disorder (ADHD). The majority of DA neurons are found in the adult midbrain; as such the midbrain is a key region of interest regarding these disorders. The literature is conflicting regarding the behavioral alterations following maternal immune activation (MIA) exposure, and the cellular and molecular consequences of MIA on the developing midbrain remain to be fully elucidated. Thus, this thesis aimed to establish the consequences of acute and mild MIA on offspring dopamine-related behaviors, as well as the associated cellular and molecular disturbances of MIA on offspring midbrains. We utilized a rat model of MIA using low dose (50μg/kg, I.P.) of LPS administered at different gestational ages. Our first study indicated that MIA at later gestational ages significantly increased pro-inflammatory IL-1β expression, and reduced HSD11B2 expression in the placenta, which is an important regulator of fetal development. In utero LPS exposure at later gestational ages also impaired the growth of neurons from affected offspring. This study identified key gestational stages during which MIA resulted in differential effects. We utilized these time points in subsequent studies, the next of which investigated neurobehavioral outcomes following MIA. Our results from that study showed that motor differences occurred in juvenile offspring following MIA at E16 only, and these differences were compensated for in adolescence. Then, there was a decline in motor behavior capabilities in adulthood, again only for animals exposed to MIA on E16 (and not E12). Furthermore, our results also demonstrated adolescent and adult offspring that were exposed to MIA at E12 had diminished responses to amphetamine in reward seeking behaviors. In our final study, we aimed to investigate the molecular and cellular changes following MIA which might explain these behavioral alterations. This final study showed a differential inflammatory response in fetal midbrains depending on gestational age of exposure as well as differential developmental alterations. For example, LPS exposure at E16 resulted in decreased VM neurosphere size after 7DIV and this was associated with an increased susceptibility to neurotoxic effects of pro-inflammatory cytokines for VM neurospheres and VM DA neurons treated in culture. In utero LPS exposure at E16 also reduced DA neuron count of fetal VM, measured by TH staining. However, there were no differences in DA neuron number in juvenile, adolescent, or adult offspring. Similarly, LPS exposure did not alter cell number or morphology of glial cells in the midbrains of affected offspring. In conclusion, this thesis indicated later rat pregnancy (E16) as vulnerable time for MIA to affect the development of the nigrostriatal pathway and subsequent behavioral outcomes, possibly implicating a role for MIA in increased risk for disorders associated with motor behavior, like PD. These effects may be mediated through alterations in the placenta and altered inflammatory mediators in the offspring brain. This thesis has also shown that MIA in earlier rat pregnancy (E12) results in altered mesocorticolimbic function, and in particular MIA on E12 resulted in a differential response to amphetamine in affected offspring, which may implicate a role for MIA in increasing the risk for disorders associated with this pathway, including drug tolerance and addiction.