2 resultados para commodity spectacle and exchange
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Trophoblasts of the placenta are the frontline cells involved in communication and exchange of materials between the mother and fetus. Within trophoblasts, calcium signalling proteins are richly expressed. Intracellular free calcium ions are a key second messenger, regulating various cellular activities. Transcellular Ca2+ transport through trophoblasts is essential in fetal skeleton formation. Ryanodine receptors (RyRs) are high conductance cation channels that mediate Ca2+ release from intracellular stores to the cytoplasm. To date, the roles of RyRs in trophoblasts have not been reported. By use of reverse transcription PCR and western blotting, the current study revealed that RyRs are expressed in model trophoblast cell lines (BeWo and JEG-3) and in human first trimester and term placental villi. Immunohistochemistry of human placental sections indicated that both syncytiotrophoblast and cytotrophoblast cell layers were positively stained by antibodies recognising RyRs; likewise, expression of RyR isoforms was also revealed in BeWo and JEG-3 cells by immunofluorescence microscopy. In addition, changes in [Ca2+]i were observed in both BeWo and JEG-3 cells upon application of various RyR agonists and antagonists, using fura-2 fluorescent videomicroscopy. Furthermore, endogenous placental peptide hormones, namely angiotensin II, arginine vasopressin and endothelin 1, were demonstrated to increase [Ca2+]i in BeWo cells, and such increases were suppressed by RyR antagonists and by blockers of the corresponding peptide hormone receptors. These findings indicate that 1) multiple RyR subtypes are expressed in human trophoblasts; 2) functional RyRs in BeWo and JEG-3 cells response to both RyR agonists and antagonists; 3) RyRs in BeWo cells mediate Ca2+ release from intracellular store in response to the indirect stimulation by endogenous peptides. These observations suggest that RyR contributes to trophoblastic cellular Ca2+ homeostasis; trophoblastic RyRs are also involved in the functional regulation of human placenta by coupling to endogenous placental peptide-induced signalling pathways.
Resumo:
Can my immediate physical environment affect how I feel? The instinctive answer to this question must be a resounding “yes”. What might seem a throwaway remark is increasingly borne out by research in environmental and behavioural psychology, and in the more recent discipline of Evidence-Based Design. Research outcomes are beginning to converge with findings in neuroscience and neurophysiology, as we discover more about how the human brain and body functions, and reacts to environmental stimuli. What we see, hear, touch, and sense affects each of us psychologically and, by extension, physically, on a continual basis. The physical characteristics of our daily environment thus have the capacity to profoundly affect all aspects of our functioning, from biological systems to cognitive ability. This has long been understood on an intuitive basis, and utilised on a more conscious basis by architects and other designers. Recent research in evidence-based design, coupled with advances in neurophysiology, confirm what have been previously held as commonalities, but also illuminate an almost frightening potential to do enormous good, or alternatively, terrible harm, by virtue of how we make our everyday surroundings. The thesis adopts a design methodology in its approach to exploring the potential use of wireless sensor networks in environments for elderly people. Vitruvian principles of “commodity, firmness and delight” inform the research process and become embedded in the final design proposals and research conclusions. The issue of person-environment fit becomes a key principle in describing a model of continuously-evolving responsive architecture which makes the individual user its focus, with the intention of promoting wellbeing. The key research questions are: What are the key system characteristics of an adaptive therapeutic single-room environment? How can embedded technologies be utilised to maximise the adaptive and therapeutic aspects of the personal life-space of an elderly person with dementia?.