5 resultados para case-based design
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Power efficiency is one of the most important constraints in the design of embedded systems since such systems are generally driven by batteries with limited energy budget or restricted power supply. In every embedded system, there are one or more processor cores to run the software and interact with the other hardware components of the system. The power consumption of the processor core(s) has an important impact on the total power dissipated in the system. Hence, the processor power optimization is crucial in satisfying the power consumption constraints, and developing low-power embedded systems. A key aspect of research in processor power optimization and management is “power estimation”. Having a fast and accurate method for processor power estimation at design time helps the designer to explore a large space of design possibilities, to make the optimal choices for developing a power efficient processor. Likewise, understanding the processor power dissipation behaviour of a specific software/application is the key for choosing appropriate algorithms in order to write power efficient software. Simulation-based methods for measuring the processor power achieve very high accuracy, but are available only late in the design process, and are often quite slow. Therefore, the need has arisen for faster, higher-level power prediction methods that allow the system designer to explore many alternatives for developing powerefficient hardware and software. The aim of this thesis is to present fast and high-level power models for the prediction of processor power consumption. Power predictability in this work is achieved in two ways: first, using a design method to develop power predictable circuits; second, analysing the power of the functions in the code which repeat during execution, then building the power model based on average number of repetitions. In the first case, a design method called Asynchronous Charge Sharing Logic (ACSL) is used to implement the Arithmetic Logic Unit (ALU) for the 8051 microcontroller. The ACSL circuits are power predictable due to the independency of their power consumption to the input data. Based on this property, a fast prediction method is presented to estimate the power of ALU by analysing the software program, and extracting the number of ALU-related instructions. This method achieves less than 1% error in power estimation and more than 100 times speedup in comparison to conventional simulation-based methods. In the second case, an average-case processor energy model is developed for the Insertion sort algorithm based on the number of comparisons that take place in the execution of the algorithm. The average number of comparisons is calculated using a high level methodology called MOdular Quantitative Analysis (MOQA). The parameters of the energy model are measured for the LEON3 processor core, but the model is general and can be used for any processor. The model has been validated through the power measurement experiments, and offers high accuracy and orders of magnitude speedup over the simulation-based method.
Resumo:
Numerous works have been conducted on modelling basic compliant elements such as wire beams, and closed-form analytical models of most basic compliant elements have been well developed. However, the modelling of complex compliant mechanisms is still a challenging work. This paper proposes a constraint-force-based (CFB) modelling approach to model compliant mechanisms with a particular emphasis on modelling complex compliant mechanisms. The proposed CFB modelling approach can be regarded as an improved free-body- diagram (FBD) based modelling approach, and can be extended to a development of the screw-theory-based design approach. A compliant mechanism can be decomposed into rigid stages and compliant modules. A compliant module can offer elastic forces due to its deformation. Such elastic forces are regarded as variable constraint forces in the CFB modelling approach. Additionally, the CFB modelling approach defines external forces applied on a compliant mechanism as constant constraint forces. If a compliant mechanism is at static equilibrium, all the rigid stages are also at static equilibrium under the influence of the variable and constant constraint forces. Therefore, the constraint force equilibrium equations for all the rigid stages can be obtained, and the analytical model of the compliant mechanism can be derived based on the constraint force equilibrium equations. The CFB modelling approach can model a compliant mechanism linearly and nonlinearly, can obtain displacements of any points of the rigid stages, and allows external forces to be exerted on any positions of the rigid stages. Compared with the FBD based modelling approach, the CFB modelling approach does not need to identify the possible deformed configuration of a complex compliant mechanism to obtain the geometric compatibility conditions and the force equilibrium equations. Additionally, the mathematical expressions in the CFB approach have an easily understood physical meaning. Using the CFB modelling approach, the variable constraint forces of three compliant modules, a wire beam, a four-beam compliant module and an eight-beam compliant module, have been derived in this paper. Based on these variable constraint forces, the linear and non-linear models of a decoupled XYZ compliant parallel mechanism are derived, and verified by FEA simulations and experimental tests.
Resumo:
Humans are profoundly affected by the surroundings which they inhabit. Environmental psychologists have produced numerous credible theories describing optimal human environments, based on the concept of congruence or “fit” (1, 2). Lack of person/environment fit can lead to stress-related illness and lack of psychosocial well-being (3). Conversely, appropriately designed environments can promote wellness (4) or “salutogenesis” (5). Increasingly, research in the area of Evidence-Based Design, largely concentrated in the area of healthcare architecture, has tended to bear out these theories (6). Patients and long-term care residents, because of injury, illness or physical/ cognitive impairment, are less likely to be able to intervene to modify their immediate environment, unless this is designed specifically to facilitate their particular needs. In the context of care settings, detailed design of personal space therefore takes on enormous significance. MyRoom conceptualises a personalisable room, utilising sensoring and networked computing to enable the environment to respond directly and continuously to the occupant. Bio-signals collected and relayed to the system will actuate application(s) intended to positively influence user well-being. Drawing on the evidence base in relation to therapeutic design interventions (7), real-time changes in ambient lighting, colour, image, etc. respond continuously to the user’s physiological state, optimising congruence. Based on research evidence, consideration is also given to development of an application which uses natural images (8). It is envisaged that actuation will require machine-learning based on interpretation of data gathered by sensors; sensoring arrangements may vary depending on context and end-user. Such interventions aim to reduce inappropriate stress/ provide stimulation, supporting both instrumental and cognitive tasks.
Resumo:
In this study I examine the development of three inclusive music bands in Cork city. Derived from Jellison’s research on inclusive music education, inclusive music bands involve students with disabilities coming together with typically developing peers to make and learn music that is meaningful (Jellison, 2012). As part of this study, I established three inclusive music bands to address the lack of inclusive music making and learning experiences in Cork city. Each of these bands evolved and adapted in order to be socio-culturally relevant within formal and informal settings: Circles (community education band), Till 4 (secondary school band) and Mish Mash (third level and community band). I integrated Digital Musical Instruments into the three bands, in order to ensure access to music making and learning for band members with profound physical disabilities. Digital Musical Instruments are electronic music devices that facilitate active music making with minimal movement. This is the first study in Ireland to examine the experiences of inclusive music making and learning using Digital Musical Instruments. I propose that the integration of Digital Musical Instruments into inclusive music bands has the potential to further the equality and social justice agenda in music education in Ireland. In this study, I employed qualitative research methodology, incorporating participatory action research methodology and case study design. In this thesis I reveal the experiences of being involved in an inclusive music band in Cork city. I particularly focus on examining whether the use of this technology enhances meaningful music making and learning experiences for members with disabilities within inclusive environments. To both inform and understand the person centered and adaptable nature of these inclusive bands, I draw theoretical insights from Sen’s Capabilities Approach and Deleuze and Guatarri’s Rhizome Theory. Supported by descriptive narrative from research participants and an indepth examination of literature, I discover the optimum conditions and associated challenges of inclusive music practice in Cork city.