2 resultados para capture and access applications
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Actinin and spectrin proteins are members of the Spectrin Family of Actin Crosslinking Proteins. The importance of these proteins in the cytoskeleton is demonstrated by the fact that they are common targets for disease causing mutations. In their most prominent roles, actinin and spectrin are responsible for stabilising and maintaining the muscle architecture during contraction, and providing shape and elasticity to the red blood cell in circulation, respectively. To carry out such roles, actinin and spectrin must possess important mechanical and physical properties. These attributes are desirable when choosing a building block for protein-based nanoconstruction. In this study, I assess the contribution of several disease-associated mutations in the actinin-1 actin binding domain that have recently been linked to a rare platelet disorder, congenital macrothrombocytopenia. I investigate the suitability of both actinin and spectrin proteins as potential building blocks for nanoscale structures, and I evaluate a fusion-based assembly strategy to bring about self-assembly of protein nanostructures. I report that the actinin-1 mutant proteins display increased actin binding compared to WT actinin-1 proteins. I find that both actinin and spectrin proteins exhibit enormous potential as nano-building blocks in terms of their stability and ability to self-assemble, and I successfully design and create homodimeric and heterodimeric bivalent building blocks using the fusion-based assembly strategy. Overall, this study has gathered helpful information that will contribute to furthering the advancement of actinin and spectrin knowledge in terms of their natural functions, and potential unnatural functions in protein nanotechnology.
Resumo:
This paper reports the results of the on-body experimental tests of a set of four planar differential antennas, originated by design variations of radiating elements with the same shape and characterized by the potential for covering wide and narrow bands. All the antenna designs have been implemented on low-cost FR4 substrate and characterized experimentally through on-body measurements. The results show the impact of the proximity to the human body on antenna performance and the opportunities in terms of potential coverage of wide and narrow bands for future ad hoc designs and implementations through wearable substrates targeting on-body and off-body communication and sensing applications.