7 resultados para capability configuration
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
In this paper, a wireless sensor network mote hardware design and implementation are introduced for building deployment application. The core of the mote design is based on the 8 bit AVR microcontroller, Atmega1281 and 2.4 GHz wireless communication chip, CC2420. The module PCB fabrication is using the stackable technology providing powerful configuration capability. Three main layers of size 25 mm2 are structured to form the mote; these are RF, sensor and power layers. The sensors were selected carefully to meet both the building monitoring and design requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks. Experiments show that the developed mote works effectively in giving stable data acquisition and owns good communication and power performance.
Resumo:
Electronic signal processing systems currently employed at core internet routers require huge amounts of power to operate and they may be unable to continue to satisfy consumer demand for more bandwidth without an inordinate increase in cost, size and/or energy consumption. Optical signal processing techniques may be deployed in next-generation optical networks for simple tasks such as wavelength conversion, demultiplexing and format conversion at high speed (≥100Gb.s-1) to alleviate the pressure on existing core router infrastructure. To implement optical signal processing functionalities, it is necessary to exploit the nonlinear optical properties of suitable materials such as III-V semiconductor compounds, silicon, periodically-poled lithium niobate (PPLN), highly nonlinear fibre (HNLF) or chalcogenide glasses. However, nonlinear optical (NLO) components such as semiconductor optical amplifiers (SOAs), electroabsorption modulators (EAMs) and silicon nanowires are the most promising candidates as all-optical switching elements vis-à-vis ease of integration, device footprint and energy consumption. This PhD thesis presents the amplitude and phase dynamics in a range of device configurations containing SOAs, EAMs and/or silicon nanowires to support the design of all optical switching elements for deployment in next-generation optical networks. Time-resolved pump-probe spectroscopy using pulses with a pulse width of 3ps from mode-locked laser sources was utilized to accurately measure the carrier dynamics in the device(s) under test. The research work into four main topics: (a) a long SOA, (b) the concatenated SOA-EAMSOA (CSES) configuration, (c) silicon nanowires embedded in SU8 polymer and (d) a custom epitaxy design EAM with fast carrier sweepout dynamics. The principal aim was to identify the optimum operation conditions for each of these NLO device configurations to enhance their switching capability and to assess their potential for various optical signal processing functionalities. All of the NLO device configurations investigated in this thesis are compact and suitable for monolithic and/or hybrid integration.
Resumo:
The thesis is focused on the magnetic materials comparison and selection for high-power non-isolated dc-dc converters for industrial applications or electric, hybrid and fuel cell vehicles. The application of high-frequency bi-directional soft-switched dc-dc converters is also investigated. The thesis initially outlines the motivation for an energy-efficient transportation system with minimum environmental impact and reduced dependence on exhaustible resources. This is followed by a general overview of the power system architectures for electric, hybrid and fuel cell vehicles. The vehicle power sources and general dc-dc converter topologies are discussed. The dc-dc converter components are discussed with emphasis on recent semiconductor advances. A novel bi-directional soft-switched dc-dc converter with an auxiliary cell is introduced in this thesis. The soft-switching cell allows for the MOSFET's intrinsic body diode to operate in a half-bridge without reduced efficiency. The converter's mode-by-mode operation is analysed and closed-form expressions are presented for the average current gain of the converter. The design issues are presented and circuit limitations are discussed. Magnetic materials for the main dc-dc converter inductor are compared and contrasted. Novel magnetic material comparisons are introduced, which include the material dc bias capability and thermal conductivity. An inductor design algorithm is developed and used to compare the various magnetic materials for the application. The area-product analysis is presented for the minimum inductor size and highlights the optimum magnetic materials. Finally, the high-flux magnetic materials are experimentally compared. The practical effects of frequency, dc-bias, and converters duty-cycle effect for arbitrary shapes of flux density, air gap effects on core and winding, the winding shielding effect, and thermal configuration are investigated. The thesis results have been documented at IEEE EPE conference in 2007 and 2008, IEEE APEC in 2009 and 2010, and IEEE VPPC in 2010. A 2011 journal has been approved by IEEE Transactions on Power Electronics.
Resumo:
With the increasing ubiquity and growing pervasiveness of Information Systems (IS) in todays’ organisations, one of the capabilities of essential value to an organisation is its IS/IT (henceforth IS) capability. However, despite this increasing importance of the IS capability, research has barely focused on providing a measure for assessing the IT capability of an organization. In overview, IS capability has contributed significantly in understanding how information technology remains a valuable component of any modern day firm (Bharadwaj 2000, Santhanam and Hartono 2003). While these prior research focus in itself is of value in establishing the importance of IS capability, this current study posits that this research area is attaining maturity and it is about time we extend this stream to provide a measure for assessing and evaluating the IS capability that defines an organization. To borrow a quote from Peter Drucker - “if it can be measured; it can be improved”.
Resumo:
The transition to becoming a leader is perhaps the least understood and most difficult in business. This Portfolio of Exploration examines the development of conscious awareness and meaning complexity as key transformational requirements to operate competently at leadership level and to succeed in a work environment characterised by change and complexity. It recognises that developing executive leadership capability is not just an issue of personality increasing what we know or expertise. It requires development of complexity in terms of how we know ourselves, relate to others, construe leadership and organisation, problem solve in business and understand the world as a whole. The exploration is grounded in the theory of adult mental development as outlined by Robert Kegan (1982, 1994) and in his collaborations with Lisa Laskow Lahey (2001, 2009). The theory points to levels of consciousness which impact on how we make meaning of and experience the world around us and respond to it. Critically it also points to transformational processes which enable us to evolve how we make meaning of our world as a means to close the mismatch between the demands of this world and our ability to cope. The exploration is laid out in three stages. Using Kegan’s (1982, 1994) theory as a framework it begins with a reflection of my career to surface how I made meaning of banking, management and subsequently leadership. In stage two I engage with a range of source thinkers in the areas of leadership, decision making, business, organisation, growth and complexity in a transformational process of developing greater conscious and complex understanding of organisational leadership (also recognising ever increasing complexity in the world). Finally, in stage three, I explore how qualitative changes as a result of this transformational effort have benefitted my professional, leadership and organisational capabilities.
Resumo:
This paper deals with the monolithic decoupled XYZ compliant parallel mechanisms (CPMs) for multi-function applications, which can be fabricated monolithically without assembly and has the capability of kinetostatic decoupling. At first, the conceptual design of monolithic decoupled XYZ CPMs is presented using identical spatial compliant multi-beam modules based on a decoupled 3-PPPR parallel kinematic mechanism. Three types of applications: motion/positioning stages, force/acceleration sensors and energy harvesting devices are described in principle. The kinetostatic and dynamic modelling is then conducted to capture the displacements of any stage under loads acting at any stage and the natural frequency with the comparisons with FEA results. Finally, performance characteristics analysis for motion stage applications is detailed investigated to show how the change of the geometrical parameter can affect the performance characteristics, which provides initial optimal estimations. Results show that the smaller thickness of beams and larger dimension of cubic stages can improve the performance characteristics excluding natural frequency under allowable conditions. In order to improve the natural frequency characteristic, a stiffness-enhanced monolithic decoupled configuration that is achieved through employing more beams in the spatial modules or reducing the mass of each cubic stage mass can be adopted. In addition, an isotropic variation with different motion range along each axis and same payload in each leg is proposed. The redundant design for monolithic fabrication is introduced in this paper, which can overcome the drawback of monolithic fabrication that the failed compliant beam is difficult to replace, and extend the CPM’s life.
Resumo:
Wireless Sensor Networks (WSNs) are currently having a revolutionary impact in rapidly emerging wearable applications such as health and fitness monitoring amongst many others. These types of Body Sensor Network (BSN) applications require highly integrated wireless sensor devices for use in a wearable configuration, to monitor various physiological parameters of the user. These new requirements are currently posing significant design challenges from an antenna perspective. This work addresses several design challenges relating to antenna design for these types of applications. In this thesis, a review of current antenna solutions for WSN applications is first presented, investigating both commercial and academic solutions. Key design challenges are then identified relating to antenna size and performance. A detailed investigation of the effects of the human body on antenna impedance characteristics is then presented. A first-generation antenna tuning system is then developed. This system enables the antenna impedance to be tuned adaptively in the presence of the human body. Three new antenna designs are also presented. A compact, low-cost 433 MHz antenna design is first reported and the effects of the human body on the impedance of the antenna are investigated. A tunable version of this antenna is then developed, using a higher performance, second-generation tuner that is integrated within the antenna element itself, enabling autonomous tuning in the presence of the human body. Finally, a compact sized, dual-band antenna is reported that covers both the 433 MHz and 2.45 GHz bands to provide improved quality of service (QoS) in WSN applications. To date, state-of-the-art WSN devices are relatively simple in design with limited antenna options available, especially for the lower UHF bands. In addition, current devices have no capability to deal with changing antenna environments such as in wearable BSN applications. This thesis presents several contributions that advance the state-of-the-art in this area, relating to the design of miniaturized WSN antennas and the development of antenna tuning solutions for BSN applications.