5 resultados para calcium imaging by confocal microscopy

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory bowel disease (IBD) is a chronic inflammation which affects the gastrointestinal tract (GIT). One of the best ways to study the immunological mechanisms involved during the disease is the T cell transfer model of colitis. In this model, immunodeficient mice (RAG-/-recipients) are reconstituted with naive CD4+ T cells from healthy wild type hosts. This model allows examination of the earliest immunological events leading to disease and chronic inflammation, when the gut inflammation perpetuates but does not depend on a defined antigen. To study the potential role of antigen presenting cells (APCs) in the disease process, it is helpful to have an antigen-driven disease model, in which a defined commensal-derived antigen leads to colitis. An antigen driven-colitis model has hence been developed. In this model OT-II CD4+ T cells, that can recognize only specific epitopes in the OVA protein, are transferred into RAG-/- hosts challenged with CFP-OVA-expressing E. coli. This model allows the examination of interactions between APCs and T cells in the lamina propria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wheat (Triticum aestivum L.) has a long tradition as a raw material for the production of malt and beer. While breeding and cultivation efforts for barley have been highly successful in creating agronomically and brew- technical optimal specialty cultivars that have become well established as brewing barley varieties, the picture is completely different for brewing wheat. An increasing wheat beer demand results in a rising amount of raw material. Wheat has been - and still is – grown almost exclusively for the baking industry. It is this high demand that defines most of the wheat breeding objectives; and these objectives are generally not favourable in brewing industry. It is of major interest to screen wheat varieties for brewing processability and to give more focus to wheat as a brewing cereal. To obtain fast and reliable predications about the suitability of wheat cultivars a new mathematical method was developed in this work. The method allows a selection based on generally accepted quality characteristics. As selection criteria the parameters raw protein, soluble nitrogen, Kolbach index, extract and viscosity were chosen. During a triannual cultivation series, wheat varieties were evaluated on their suitability for brewing as well as stability to environmental conditions. To gain a fundamental understanding of the complex malting process, microstructural changes were evaluated and visualized by confocal laser scanning and scanning electron microscopy. Furthermore, changes observed in the micrographs were verified and endorsed by metabolic changes using established malt attributes. The degradation and formation of proteins during malting is essential for the final beer quality. To visualise fundamental protein changes taking place during malting, samples of each single process step were analysed and fractioned according their solubility. Protein fractions were analysed using a Lab-on-a-chip technique as well as OFFgel analysis. In general, a different protein distribution of wheat compared to barley or oat could be confirmed. During the malting process a degradation of proteins to small peptides and amino acids could be observed in all four Osborn fractions. Furthermore, in this study a protein profiling was performed to evaluate changes during the mashing process as well as the influence of grist composition. Differences in specific protein peaks and profile were detected for all samples during mashing. This study investigated the suitability of wheat for malting and brewing industry and closed the scientifical gap of amylolytic, cytolytic and proteolytic changes during malting and mashing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a degenerative retinal disease leading to photoreceptor cell loss. In 2011, our group identified the synthetic progesterone ‘Norgestrel’ as a potential treatment for RP. Subsequent research showed Norgestrel to work through progesterone receptor membrane component 1 (PGRMC1) activation and upregulation of neuroprotective basic fibroblast growth factor (bFGF). Using trophic factor deprivation of 661W photoreceptor-like cells, we aimed to further elucidate the mechanism leading to Norgestrel-induced neuroprotection. In the present manuscript, we show by flow cytometry and live-cell immunofluorescence that Norgestrel induces an increase in cytosolic calcium in both healthy and stressed 661Ws over 24h. Specific PGRMC1 inhibition by AG205 (1 μM) showed this rise to be PGRMC1-dependent, primarily utilising calcium from extracellular sources, for blockade of L-type calcium channels by verapamil (50 μM) prevented a Norgestrel-induced calcium influx in stressed cells. Calcium influx was also shown to be bFGF-dependent, for siRNA knock down of bFGF prevented Norgestrel-PGRMC1 induced changes in cytosolic calcium. Notably, we demonstrate PGRMC1-activation is necessary for Norgestrel-induced bFGF upregulation. We propose that Norgestrel protects through the following pathway: binding to and activating PGRMC1 expressed on the surface of photoreceptor cells, PGRMC1 activation drives bFGF upregulation and subsequent calcium influx. Importantly, raised intracellular calcium is critical to Norgestrel's protective efficacy, for extracellular calcium chelation by EGTA abrogates the protective effects of Norgestrel on stressed 661W cells in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure can be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptin ameliorates the prosecretory and prokinetic effects of the pro-inflammatory cytokine interleukin-6 on rat colon. Leptin also suppresses the neurostimulatory effects of irritable bowel syndrome plasma, which has elevated concentrations of interleukin-6, on enteric neurons. This may indicate a regulatory role for leptin in immune-mediated bowel dysfunction. In addition to its role in regulating energy homeostasis, the adipokine leptin modifies gastrointestinal (GI) function. Indeed, leptin-resistant obese humans and leptin-deficient obese mice exhibit altered GI motility. In the functional GI disorder irritable bowel syndrome (IBS), circulating leptin concentrations are reported to differ from those of healthy control subjects. Additionally, IBS patients display altered cytokine profiles, including elevated circulating concentrations of the pro-inflammatory cytokine interleukin-6 (IL-6), which bears structural homology and similarities in intracellular signalling to leptin. This study aimed to investigate interactions between leptin and IL-6 in colonic neurons and their possible contribution to IBS pathophysiology. The functional effects of leptin and IL-6 on colonic contractility and absorptosecretory function were assessed in organ baths and Ussing chambers in Sprague–Dawley rat colon. Calcium imaging and immunohistochemical techniques were used to investigate the neural regulation of GI function by these signalling molecules. Our findings provide a neuromodulatory role for leptin in submucosal neurons, where it inhibited the stimulatory effects of IL-6. Functionally, this translated to suppression of IL-6-evoked potentiation of veratridine-induced secretory currents. Leptin also attenuated IL-6-induced colonic contractions, although it had little direct effect on myenteric neurons. Calcium responses evoked by IBS plasma in both myenteric and submucosal neurons were also suppressed by leptin, possibly through interactions with IL-6, which is elevated in IBS plasma. As leptin has the capacity to ameliorate the neurostimulatory effects of soluble mediators in IBS plasma and modulated IL-6-evoked changes in bowel function, leptin may have a role in immune-mediated bowel dysfunction in IBS patients.