6 resultados para biological activity
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The main objective of this thesis is to outline the synthetic chemistry involved in the preparation of a range of novel lanostane and cholestane derivatives, and subsequent investigation into their biological activity in cancer cells. The biological results obtained throughout the project have driven the strategic synthesis of new compounds, in an effort to optimise the anti cancer potential of lanostane and cholestane derivatives. The first chapter begins with an overview of steroidal compounds and details a literature review of the natural sources of these moieties, as well as their biosynthesis and reported synthetic derivatives. The biological activity of interesting natural and synthetic analogues is also discussed. In addition, an insight into some currently prescribed pharmaceutical compounds, with functional groups relevant to this project, is presented. The second chapter discusses the methods employed for the synthesis of these novel lanostane and cholestane derivatives, and comprises three main sections. Firstly, various oxidation products of lanosterol are synthesised, mainly via epoxidations of the C-8,9 and C- 24,25 alkenes, and also allylic oxidations at these positions. Secondly, amine derivatives of lanosterol are formed by cleaving the lanostane side chain, thereby yielding a new cholestane nucleus, and performing several reductive aminations on the resulting key aldehyde intermediates. Various amines such as piperidine, morpholine, diethylamine and aniline are employed in the reductive amination reactions to yield novel cholestane steroids with amine side chains. Finally, starting from stigmasterol and proceeding with the same methodology of cleaving the steroidal side chain and subsequently performing reductive aminations, novel cholestane derivatives of the biologically active amines are synthesised. The cytotoxicity of these compounds against CaCo-2 and U937 cell lines is presented in terms of percentage viability of cells, IC50 value and apoptosis. The MTT assay is used to determine the percentage viability of cells, and the IC50 data is generated from the MTT results. Apoptosis is measured in terms of fold increase relative to a carrier control. In summary, the compounds formed are discussed in terms of chemical synthesis, spectroscopic interpretation and biological activity. The main reaction pathways involved in the chemistry within this project are various oxidations and reductive amination. The final chapter is a detailed account of the full experimental procedures for the compounds synthesised during this work, including characterisation using spectroscopic and analytical data.
Resumo:
Development of novel synthetic methodology for selective transformation of organic compounds is a central element underpinning organic synthesis with control of chemo-, regio- and stereoselectivity a very high priority. Reactions which can be conducted under mild reaction conditions and, ideally in an environmentally attractive manner, are particularly advantageous. The principal objective of this thesis was to explore the synthesis, reactivity and synthetic utility of a series of α,β-thio-β-chloroenones. The stereochemical features of these transformations and the potential of this novel series of compounds in the synthesis of bioactive compounds were of particular interest. In exploring the reactivity of these compounds, the key transformations included nucleophilic additions and Stille cross-coupling at the β-carbon. Chapter 1 reviews the literature relevant to the research conducted, and focuses in particular on the synthesis of β-chloroenones and related unsaturated carbonyl compounds. The synthesis of chalcone compounds from various precursors is also discussed, with particular emphasis on the use of palladium cross-coupling reactions in the preparation of these compounds. The biological activity of chalcones is also summarised in this chapter. The second chapter delineates the stereoselective synthesis of the novel α-thio-β-chloroenones from the corresponding α-thioketones in a multistep reaction cascade initiated by a NCS-mediated chlorination. A range of both alkyl and aryl β-chloroenones were prepared in this work and the oxidation of these compounds to the corresponding sulfoxides and sulfones is also outlined. The electrophilicity of the β-carbon of the enones was examined in nucleophilic addition/substitution reactions with successful access to a variety of synthetically useful novel adducts including acetals and enaminoketones. Investigation of the synthetic potential of the Stille cross-coupling reaction with the novel α-thio-β-chloroenones was explored and provided an efficient route for the synthesis of a novel series of chalcones. Most importantly this new methodology provided a new and synthetically powerful approach for carbon-carbon bond formation at the β-carbon under mild neutral conditions. A preliminary investigation into the use of these β-chloroenones as dienophiles in Diels-Alder cycloaddition reactions is also discussed in this chapter. Chapter 2 also reports the nucleophilic addition of N, O, S and C nucleophiles to previously described β-chloroacrylamides and their corresponding sulfoxide derivatives. This work builds on previous research carried out in this programme and the reactivity of these β-chloroacrylamides at the sulfide and sulfoxide level is compared. Comparison of the reactivity of the β-chloroacrylamides, in nucleophilic substitution and Stille-coupling, with that of the novel β-chloroenones is of interest. Finally, the biological activity of both the β-chloroenones and the β-chloroacrylamides in terms of cytotoxicity is summarised in Chapter 2. The final chapter, Chapter 3, details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.
Resumo:
The research described in this thesis focuses on the design and synthesis of stable α-diazosulfoxides and investigation of their reactivity under a variety of conditions (transition-metal catalysis, thermal, photochemical and microwave) with a particular emphasis on the synthesis of novel heterocyclic compounds with potential biological activity. The exclusive reaction pathway for these α-diazosulfoxides was found to be hetero-Wolff rearrangement to give α-oxosulfine intermediates. In the first chapter, a literature review of sulfines is presented, including a discussion of naturally occurring sulfines, and an overview of the synthesis and reactivity of sulfines. The potential of sulfines in organic synthesis and recent developments in particular are highlighted. The second chapter discusses the synthesis and reactivity of α-diazosulfoxides, building on earlier results in this research group. The synthesis of lactone-based α-diazosulfoxides and, for the first time, ketone-based benzofused and monocyclic α-diazosulfoxides is described. The reactivity of these α-diazosulfoxides is then explored under a variety of conditions, such as transition-metal catalysis, photochemical and microwave, generating labile α-oxosulfine intermediates, which are trapped using amines and dienes, in addition to the spontaneous reaction pathways which occur with α-oxosulfines in the absence of a trap. A new reaction pathway was explored with the lactone based α-oxosulfines, involving reaction with amines to generate novel 3-aminofuran-2(5H)-ones via carbophilic attack, in very good yields. The reactivity of ketone-based α-diazosulfoxides was explored for the first time, and once again, pseudo-Wolff rearrangement to the α-oxosulfines was the exclusive reaction pathway observed. The intermediacy of the α-oxosulfines was confirmed by trapping as cycloadducts, with the stereochemical features dependant on the reaction conditions. In the absence of a diene trap, a number of reaction fates from the α-oxosulfines were observed, including complete sulfinyl extrusion to give indanones, sulfur extrusion to give indanediones, and, to a lesser extent, dimerisation. The indanediones were characterised by trapping as quinoxalines, to enable full characterisation. One of the overriding outcomes of this thesis was the provision of new insights into the behaviour of α-oxosulfines with different transition metal catalysts, and under thermal, microwave and photolysis conditions. A series of 3-aminofuran-2(5H)-ones and benzofused dihydro-2H-thiopyran S-oxides were submitted for anticancer screening at the U.S. National Cancer Institute. A number of these derivatives were identified as hit compounds, with excellent cell growth inhibition. One 3-aminofuran-2(5H)-one derivative has been chosen for further screening. The third chapter details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research. The data for the crystal structures are contained in the attached CD.
Resumo:
Geiparvarin is a natural product which contains both a 3(2H)-furanone and a coumarin moiety in its structure. The aim of this project was to investigate the use of Pd(0)-mediated C–C bondforming reactions to produce structurally modified geiparvarins. Chapter 1 consists of a review of the relevant literature, including that pertaining to the syntheses of selected naturally occurring 3(2H)-furanones. The known syntheses of geiparvarin and closely related analogues are examined, along with the documented biological activity of these compounds. The synthetic routes which allow access to 4-substituted-3(2H)-furanones are also described. Chapter 2 describes in detail the synthesis of a variety of novel structurally modified geiparvarins by two complementary routes, both approaches utilising Pd(0)-mediated crosscoupling reactions, and discusses the characterisation of these compounds. The preparation of 5-ethyl-3(2H)-furanones is described, as is their incorporation into geiparvarin and the corresponding 5″-alkylgeiparvarin analogues via formation and dehydration of intermediate alcohols. Halogenation of 5-ethyl-3(2H)-furanones and the corresponding geiparvarin derivatives is discussed, along with further reactions of the resulting halides. Preparation of 3″-arylgeiparvarins involving both Suzuki–Miyura and Stille reactions, using the appropriate intermediate iodides and bromides, is described. The application of Stille and Heck conditions to give 3″-ethenylgeiparvarin analogues and Sonogashira conditions to produce 3″-ethynylgeiparvarin analogues, using the relevant intermediate iodides, is also extensively outlined. Chapter 3 contains all of the experimental data and details of the synthetic methods employed for the compounds prepared during the course of this research. All novel compounds prepared were fully characterised using NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis; the details of which are included.
Resumo:
This thesis details the design, development and execution of innovative methodology in the total synthesis of the terpene-derived marine natural product, furospongolide. It also outlines the synthetic routes used to prepare a novel range of furanolipids derivatives and subsequent evaluation of their potential as antitumour agents. The first chapter is a review of the literature describing efforts undertaken towards the synthesis of biologically active furanosesterterpenoid marine natural products. A brief discussion on the sources and biological activity exhibited by furan natural products is also provided. In addition, a concise account of the role of hypoxia in cancer, and the increasing interest in HIF-1 inhibition as a target for chemotherapeutics is examined. The second chapter discusses the concise synthesis of the marine HIF-1 inhibitor furospongolide, which was achieved in five linear steps from (E,E)-farnesyl acetate. The synthetic strategy features a selective oxidation reaction, a Schlosser sp3-sp3 cross-coupling, a Wittig cross-coupling and an elaborate one-pot selective reduction, lactonisation and isomerization reaction to install the butenolide ring. The structure-activity relationship of furospongolide was also investigated. This involved the design and synthesis of a library of structurally modified analogues sharing the same C1-C13 subunit. This was achieved by exploiting the brevity and high level of convergence of our synthetic route together with the readily amenable structure of our target molecule. Exploiting the Schlosser cross-coupling allowed for replacement of furan with other heterocycles in the preparation of various furanolipid and thiophenolipid derivatives. The employment of reductive amination and Wittig chemistry further added to our novel library of structural derivatives. The third chapter discusses the results obtained from the NCI from biological evaluation From a collection of 28 novel compounds evaluated against the NCI-60 cancer cell array, six drug candidates were successfully selected for further biological evaluation on the basis of antitumour activity. COMPARE analysis revealed a strong correlation between some of our design analogues and the blockbuster anticancer agent tamoxifen, further supporting the potential of furanolipids in the treatment of breast cancer. The fourth chapter, details the full experimental procedures, including spectroscopic and analytical data for all the compounds prepared during this research.
Resumo:
Muscarine was identified as an active principle of the poisonous mushroom Amanita muscaria over 170 years ago and has been identified as an agonist of acetylcholine. The synthesis of all stereoisomers of muscarine have been accomplished at this stage by chemical methods and the biological activity of these compounds tested. A number of synthetic routes to enantiomerically pure muscarine and its analogues have been published. In this work, we are focussed on the use of a novel biotransformation strategy to access these compounds. Asymmetric synthesis involves targeting a synthetic pathway leading to one enantiomer of a compound and biocatalysis is one strategy used in asymmetric synthesis. Chapter 1 consists of a review of the relevant literature pertaining to the synthesis and stereoselective transformations of 3-hydroxytetrahydrofuranss. A review of synthetic routes to these compounds is presented, with a particular focus on routes to the natural product muscarine and its analogues. Chapter 2 discusses the preparative routes to the 3-hydroxytetrahydrofurans via 3(2H)- furanones. Steps amongst which include Rh(II) mediate cyclisation and kinetic resolution via baker’s yeast mediated carbonyl reduction, resulting in enantioenriched 3- hydroxytetrahydrofuran derivatives. Finally, application of this methodology to the preparation of all four enantiomers of an analogue of desmethylmuscarine and the synthesis of epimuscarine is described. Chapter 3 consists of a detailed experimental section outlining the synthetic procedures employed.