2 resultados para autonomic ganglia

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hereditary sensory autonomic neuropathy IV (HSAN IV) is an autosomal recessive disorder characterised by inability to feel pain and anhidrosis and is a consequence of defective NGF/TrkA signalling and growth of sensory and sympathetic neurons. Glucocortiocoid-induced tumour necrosis factors receptor (GITR), a transmembrane protein, activated by its specific ligand, GITRL, is well known for its role in the regulation of innate and acquired immune system responses. Recently, GITR was found to be required for NGF-dependant and extracellular signal-related kinase 1/2 (ERK1/2)-induced neurite growth and target innervation in the developing sympathetic nervous system (SNS). Given this novel role of GITR, it is possible that strategies targeting GITR have potential therapeutic benefit in promoting neurite growth in autonomic neuropathies such as HSAN IV. Using P1 mouse SCG neurons as a model, in addition to various SCG cell treatments, knock down models and transfection methods, we investigated whether GITR increases the sensitivity of sympathetic neurons to NGF; the region of GITR required for the enhancement of NGF-promoted growth, the signalling pathways downstream of GITR and how extensively GITR is involved in regulating peripheral innervation of the SNS. Results indicate that the region responsible for the growth promoting effects of GITR lies in its juxtamembrane intracellular region (here termed the growth promoting domain (GPD)) of GITR. The GPD of GITR activates ERK1/2 and inhibits nuclear factor kappa B (NF-κB) in an inverse fashion to provide an optimal cellular growth environment for P1 SCG neurons. While deleting the GPD of GITR had no effect on TrkA expression, constitutive phosphorylation of specific sites in the GPD reduced TrkA expression indicating a possible role for GITR in increasing the sensitivity of SCG neurons to NGF by the regulation of these sites, TrkA expression and subsequent NGF/TrkA binding. GITR appears to be heterogeneously required for NGF-promoted target innervation of SCG neurons in some organs, implying additional factors are involved in extensive NGF-target innervation of the SNS. In conclusion, this study answers basic biological questions regarding the molecular mechanism behind the role of GITR in the development of the SNS, and provides a basis for future research if GITR modulation is to be developed as a strategy for promoting axonal growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sprouty proteins are key regulators of cell growth and branching morphogenesis during development. Human SPRY3 which maps to the pseudoautosomal region 2, undergoes random X-inactivation in females and preferential Y-inactivation in males, behaving as though genetically X-linked. Spry3 is widely expressed in neuronal tissues, being found at high levels in the cerebellum and particularly in the Purkinje cells which, notably, are deficient in the autistic brain. Spry3 is also highly expressed in other ganglia in adults including retinal ganglion cells, dorsal root ganglion and superior cervical ganglion. SPRY3 enhancer can drive SPRY3 expression in the lung airway, which is consistent with a role in branching morphogenesis and the function of the original Drosophila Spry gene, which is critical for lung morphogenesis, providing a possible explanation for an observed anatomic abnormality in the autistic lung airway. In the human and mouse, the SPRY3 core promoter contains an AG-rich repeat and we found evidence of coexpression, promoter binding and regulation of SPRY3 expression by transcription factors EGR1, ZNF263 and PAX6. Spry3 over-expression in mouse superior cervical ganglion cells inhibits axon branching and Spry3 knockdown in those cells increases axon branching, consistent with known functions of other Sprouty proteins. Novel SPRY3 upstream transcripts that I characterised originate from three start sites in the X-linked F8A3 – TMLHE gene region, which is recently implicated in autism causation. Arising from these findings, I propose that the lung airway abnormality and low levels of blood carnitine found in autism suggest that deregulation of SPRY3 may underpin a subset of autism cases.