2 resultados para automatic translation

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of modern wireless technologies has seen a shift in focus towards the design and development of educational systems for deployment through mobile devices. The use of mobile phones, tablets and Personal Digital Assistants (PDAs) is steadily growing across the educational sector as a whole. Mobile learning (mLearning) systems developed for deployment on such devices hold great significance for the future of education. However, mLearning systems must be built around the particular learner’s needs based on both their motivation to learn and subsequent learning outcomes. This thesis investigates how biometric technologies, in particular accelerometer and eye-tracking technologies, could effectively be employed within the development of mobile learning systems to facilitate the needs of individual learners. The creation of personalised learning environments must enable the achievement of improved learning outcomes for users, particularly at an individual level. Therefore consideration is given to individual learning-style differences within the electronic learning (eLearning) space. The overall area of eLearning is considered and areas such as biometric technology and educational psychology are explored for the development of personalised educational systems. This thesis explains the basis of the author’s hypotheses and presents the results of several studies carried out throughout the PhD research period. These results show that both accelerometer and eye-tracking technologies can be employed as an Human Computer Interaction (HCI) method in the detection of student learning-styles to facilitate the provision of automatically adapted eLearning spaces. Finally the author provides recommendations for developers in the creation of adaptive mobile learning systems through the employment of biometric technology as a user interaction tool within mLearning applications. Further research paths are identified and a roadmap for future of research in this area is defined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribosome profiling (ribo-seq) is a recently developed technique that provides genomewide information on protein synthesis (GWIPS) in vivo. The high resolution of ribo-seq is one of the exciting properties of this technique. In Chapter 2, I present a computational method that utilises the sub-codon precision and triplet periodicity of ribosome profiling data to detect transitions in the translated reading frame. Application of this method to ribosome profiling data generated for human HeLa cells allowed us to detect several human genes where the same genomic segment is translated in more than one reading frame. Since the initial publication of the ribosome profiling technique in 2009, there has been a proliferation of studies that have used the technique to explore various questions with respect to translation. A review of the many uses and adaptations of the technique is provided in Chapter 1. Indeed, owing to the increasing popularity of the technique and the growing number of published ribosome profiling datasets, we have developed GWIPS-viz (http://gwips.ucc.ie), a ribo-seq dedicated genome browser. Details on the development of the browser and its usage are provided in Chapter 3. One of the surprising findings of ribosome profiling of initiating ribosomes carried out in 3 independent studies, was the widespread use of non-AUG codons as translation initiation start sites in mammals. Although initiation at non-AUG codons in mammals has been documented for some time, the extent of non-AUG initiation reported by these ribo-seq studies was unexpected. In Chapter 4, I present an approach for estimating the strength of initiating codons based on the leaky scanning model of translation initiation. Application of this approach to ribo-seq data illustrates that initiation at non-AUG codons is inefficient compared to initiation at AUG codons. In addition, our approach provides a probability of initiation score for each start site that allows its strength of initiation to be evaluated.