5 resultados para attention deficit disorder with hyperactivity
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Background: Compared to existing literature on childhood attention deficit hyperactivity disorder (ADHD), little published adult data are available, particularly outside of the United States. Using General Practitioner (GP) questionnaires from the United Kingdom, this study aimed to examine a number of issues related to ADHD in adults, across three cohorts of patients, adults who received ADHD drug treatment in childhood/adolescence but stopped prior to adulthood; adults who received ADHD drug treatment in childhood/adolescence and continued treatment into adulthood and adults who started ADHD drug treatment in adulthood.Methods: Patients with a diagnosis of ADHD and prescribed methylphenidate, dexamfetamine or atomoxetine were identified using data from The Health Improvement Network (THIN). Dates when these drugs started and stopped were used to classify patients into the three cohorts. From each cohort, 50 patients were randomly selected and questionnaires were sent via THIN to their GPs.GPs returned completed questionnaires to THIN who forwarded anonymised copies to the researchers. Datasets were analysed using descriptive statistics.Results: Overall response rate was 89% (133/150). GPs stated that in 19 cases, the patient did not meet the criteria of that group; the number of valid questionnaires returned was 114 (76%). The following broad trends were observed: 1) GPs were not aware of the reason for treatment cessation in 43% of cases, 2) patient choice was the most common reason for discontinuation (56%), 3) 7% of patients who stopped pharmacological treatment subsequently reported experiencing ADHD symptoms, 4) 58% of patients who started pharmacological treatment for ADHD in adulthood received pharmacological treatment for other mental health conditions prior to the ADHD being diagnosed.Conclusion: This study presents some key findings relating to ADHD; GPs were often not aware of the reason for patients stopping ADHD treatment in childhood or adolescence. Patient choice was identified as the most common reason for treatment cessation. For patients who started pharmacological treatment in adulthood, many patients received pharmacological treatment for comorbidities before a diagnosis of ADHD was made.
Resumo:
The gut-hormone, ghrelin, activates the centrally expressed growth hormone secretagogue 1a (GHS-R1a) receptor, or ghrelin receptor. The ghrelin receptor is a G-protein coupled receptor (GPCR) expressed in several brain regions, including the arcuate nucleus (Arc), lateral hypothalamus (LH), ventral tegmental area (VTA), nucleus accumbens (NAcc) and amygdala. Activation of the GHS-R1a mediates a multitude of biological activities, including release of growth hormone and food intake. The ghrelin signalling system also plays a key role in the hedonic aspects of food intake and activates the dopaminergic mesolimbic circuit involved in reward signalling. Recently, ghrelin has been shown to be involved in mediating a stress response and to mediate stress-induced food reward behaviour via its interaction with the HPA-axis at the level of the anterior pituitary. Here, we focus on the role of the GHS-R1a receptor in reward behaviour, including the motivation to eat, its anxiogenic effects, and its role in impulsive behaviour. We investigate the functional selectivity and pharmacology of GHS-R1a receptor ligands as well as crosstalk of the GHS-R1a receptor with the serotonin 2C (5-HT2C) receptor, which represent another major target in the regulation of eating behaviour, stress-sensitivity and impulse control disorders. We demonstrate, to our knowledge for the first time, the direct impact of GHS-R1a signalling on impulsive responding in a 2-choice serial reaction time task (2CSRTT) and show a role for the 5-HT2C receptor in modulating amphetamine-associated impulsive action. Finally, we investigate differential gene expression patterns in the mesocorticolimbic pathway, specifically in the NAcc and PFC, between innate low- and high-impulsive rats. Together, these findings are poised to have important implications in the development of novel treatment strategies to combat eating disorders, including obesity and binge eating disorders as well as impulse control disorders, including, substance abuse and addiction, attention deficit hyperactivity disorder (ADHD) and mood disorders.
Resumo:
Maternal infection during pregnancy increases the risk of several neuropsychiatric disorders later in life, many of which have a component of dopaminergic (DA) dysfunction, including schizophrenia, autism spectrum disorders (ASD), and attention deficit hyperactivity disorder (ADHD). The majority of DA neurons are found in the adult midbrain; as such the midbrain is a key region of interest regarding these disorders. The literature is conflicting regarding the behavioral alterations following maternal immune activation (MIA) exposure, and the cellular and molecular consequences of MIA on the developing midbrain remain to be fully elucidated. Thus, this thesis aimed to establish the consequences of acute and mild MIA on offspring dopamine-related behaviors, as well as the associated cellular and molecular disturbances of MIA on offspring midbrains. We utilized a rat model of MIA using low dose (50μg/kg, I.P.) of LPS administered at different gestational ages. Our first study indicated that MIA at later gestational ages significantly increased pro-inflammatory IL-1β expression, and reduced HSD11B2 expression in the placenta, which is an important regulator of fetal development. In utero LPS exposure at later gestational ages also impaired the growth of neurons from affected offspring. This study identified key gestational stages during which MIA resulted in differential effects. We utilized these time points in subsequent studies, the next of which investigated neurobehavioral outcomes following MIA. Our results from that study showed that motor differences occurred in juvenile offspring following MIA at E16 only, and these differences were compensated for in adolescence. Then, there was a decline in motor behavior capabilities in adulthood, again only for animals exposed to MIA on E16 (and not E12). Furthermore, our results also demonstrated adolescent and adult offspring that were exposed to MIA at E12 had diminished responses to amphetamine in reward seeking behaviors. In our final study, we aimed to investigate the molecular and cellular changes following MIA which might explain these behavioral alterations. This final study showed a differential inflammatory response in fetal midbrains depending on gestational age of exposure as well as differential developmental alterations. For example, LPS exposure at E16 resulted in decreased VM neurosphere size after 7DIV and this was associated with an increased susceptibility to neurotoxic effects of pro-inflammatory cytokines for VM neurospheres and VM DA neurons treated in culture. In utero LPS exposure at E16 also reduced DA neuron count of fetal VM, measured by TH staining. However, there were no differences in DA neuron number in juvenile, adolescent, or adult offspring. Similarly, LPS exposure did not alter cell number or morphology of glial cells in the midbrains of affected offspring. In conclusion, this thesis indicated later rat pregnancy (E16) as vulnerable time for MIA to affect the development of the nigrostriatal pathway and subsequent behavioral outcomes, possibly implicating a role for MIA in increased risk for disorders associated with motor behavior, like PD. These effects may be mediated through alterations in the placenta and altered inflammatory mediators in the offspring brain. This thesis has also shown that MIA in earlier rat pregnancy (E12) results in altered mesocorticolimbic function, and in particular MIA on E12 resulted in a differential response to amphetamine in affected offspring, which may implicate a role for MIA in increasing the risk for disorders associated with this pathway, including drug tolerance and addiction.
Resumo:
Background/aims: Objective of the current thesis is to investigate the potential impact of birth by Caesarean section (CS) on child psychological development, including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), behavioural difficulties and school performance. Structure/methods: Published literature to date on birth by CS, ASD and ADHD was reviewed (Chapter 2). Data from the UK Millennium Cohort Study (MCS) were analysed to determine the association between CS and ASD, ADHD and parent-reported behavioural difficulties (Chapter 3). The Swedish National Registers were used to further assess the association with ASD, ADHD and school performance (Chapters 4-6). Results: In the review, children born by CS were 23% more likely to be diagnosed with ASD after controlling for potential confounders. Only two studies reported adjusted estimates on the association between birth by CS and ADHD, results were conflicting and limited. CS was not associated with ASD, ADHD or behavioural difficulties in the UK MCS. In the Swedish National Registers, children born by CS were more likely to be diagnosed with ASD or ADHD. The association with elective CS did not persist when compared amongst siblings. There was little evidence of an association between birth by elective CS and poor school performance. Children born by elective CS had slight reduction in school performance. Conclusions: The lack of association with the elective CS in the sibling design studies indicates that the association in the population is most probably due to confounding. A small but significant association was found between birth by CS and school performance. However, the effect may have been due to residual confounding or confounding by indication and should be interpreted with caution. The overall conclusion is that birth by CS does not appear to have a causal relationship with the aspects of child psychological development investigated.
Resumo:
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.