3 resultados para aromatic alcohols
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis is focused on transition metal catalysed reaction of α-diazoketones leading to aromatic addition to form azulenones, with particular emphasis on enantiocontrol through use of chiral copper catalysts. The first chapter provides an overview of the influence of variation of the substituent at the diazo carbon on the outcome of subsequent reaction pathways, focusing in particular on C-H insertion, cyclopropanation, aromatic addition and ylide formation drawing together for the first time input from a range of primary reports. Chapter two describes the synthesis of a range of novel α-diazoketones. Rhodium and copper catalysed cyclisation of these to form a range of azulenones is described. Variation of the transition metal catalyst was undertaken using both copper and rhodium based systems and ligand variation, including the design and synthesis of a novel bisoxazoline ligand. The influence of additives, especially NaBARF, on the enantiocontrol was explored in detail and displayed an interesting impact which was sensitive to substituent effects. Further exploration demonstrated that it is the sodium cation which is critical in the additive effects. For the first time, enantiocontrol in the aromatic addition of terminal diazoketones was demonstrated indicating enantiofacial control in the aromatic addition is feasible in the absence of a bridgehead substituent. Determination of the enantiopurity in these compounds was particularly challenging due to the lability of the products. A substantial portion of the work was focused on determining the stereochemical outcome of the aromatic addition processes, both the absolute stereochemistry and extent of enantiopurity. Formation of PTAD adducts was beneficial in this regard. The third chapter contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of chiral stationary phase HPLC and 1H NMR analysis are included in the appendix.
Resumo:
Significant enhancements in enantioselectivities and reaction efficiencies in asymmetric copper-catalysed C-H insertion and aromatic addition reactions of α-diazocarbonyl compounds in the presence of various group I salts are reported. For the first time in carbenoid chemistry, evidence for the critical role of the metal cation is described.
Resumo:
A large number of optically active drugs and natural products contain α-functionalised ketones or simple derivatives thereof. Furthermore, chiral α-alkylated ketones are useful synthons and have found widespread use in total synthesis. The asymmetric alkylation of ketones represents one of the most powerful and longstanding procedures in organic chemistry. Surprisingly, however, only one effective methodology is available, and this involves the use of chiral auxiliaries. This is discussed in Chapter 1, which also provides a background of other key topics discussed throughout the thesis. Expanding on the existing methodology of chiral auxiliaries, Chapter 2 details the synthesis of a novel chiral auxiliary containing a pyrrolidine ring and its use in the asymmetric preparation of α-alkylated ketones with good enantioselectivity. The synthesis of racemic α-alkylated ketones as reference standards for GC chromatography is also reported in this chapter. Chapter 3 details a new approach to chiral α-alkylated ketones using an intermolecular chirality transfer methodology. This approach employs the use of simple non-chiral dimethylhydrazones and their asymmetric alkylation using the chiral diamine ligands, (+)- and (-)-sparteine. The methodology described represents the first example of an asymmetric alkylation of non-chiral azaenolates. Enantiomeric ratios up to 83 : 17 are observed. Chapter 4 introduces the first aldol-Tishchenko reaction of an imine derivative for the preparation of 1,3-aminoalcohol precursors. 1,3-Aminoalcohols can be synthesised via indirect routes involving various permutations of stepwise construction with asymmetric induction. Our approach offers an alternative highly diastereomeric route to the synthesis of this important moiety utilising N-tert-butanesulfinyl imines in an aldol-Tishchenko-type reaction. Chapter 5 details the experimental procedures for all of the above work. Chapter 6 discusses the results of a separate research project undertaken during this PhD. 2-alkyl-quinolin-4-ones and their N-substituted derivatives have several important biological functions such as the role of Pseudomonas quinolone signal (PQS) in quorum sensing. Herein, we report the synthesis of its biological precursor, 2-heptyl-4-hydroxy-quinoline (HHQ) and possible isosteres of PQS; the C-3 Cl, Br and I analogues. N-Methylation of the iodide was also feasible and the usefulness of this compound showcased in Pd-catalysed cross-coupling reactions, thus allowing access to a diverse set of biologically important molecules.