2 resultados para anthropogenic environment
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The climatic development of the Mid to Late Quaternary (last 400,000 years) is characterised by fluctuation between glacial and interglacial periods leading to the present interglacial, the Holocene. In comparison to preceding periods it was believed the Holocene represented a time of relative climatic stability. However, recent work has shown that the Holocene can be divided into cooler periods such as the Little Ice Age alternating with time intervals where climatic conditions ameliorated i.e. Medieval Warm Period, Holocene Thermal Optimum and the present Modern Optimum. In addition, the Holocene is recognised as a period with increasing anthropogenic influence on the environment. Onshore records recording glacial/interglacial cycles as well as anthropogenic effects are limited. However, sites of sediment accumulation on the shallow continental shelf offer the potential to reconstruct these events. Such sites include tunnel valleys and low energy, depositional settings. In this study we interrogated the sediment stratigraphy at such sites in the North Sea and Irish Sea using traditional techniques, as well as novel applications of geotechnical data, to reconstruct the palaeoenvironmental record. Within the German North Sea sector a combination of core, seismic and in-situ Cone Penetration Testing (CPT) data was used to identify sedimentary units, place them within a morphological context, relate them to glacial or interglacial periods stratigraphically, and correlate them across the German North Sea. Subsequently, we were able to revise the Mid to Late Quaternary stratigraphy for the North Sea using this new and novel data. Similarly, Holocene environmental changes were investigated within the Irish Sea at a depositional site with active anthropogenic influence. The methods used included analyses on grain-size distribution, foraminifera, gamma spectrometry, AMS 14C and physical core logging. The investigation revealed a strong fluctuating climatic signal early in the areas history before anthropogenic influence affects the record through trawling.
Resumo:
Anthropogenic pollutant chemicals pose a major threat to aquatic organisms. There is a need for more research on emerging categories of environmental chemicals such as nanomaterials, endocrine disruptors and pharmaceuticals. Proteomics offers options and advantages for early warning of alterations in environmental quality by detecting sub-lethal changes in sentinel species such as the mussel, Mytilus edulis. This thesis aimed to compare the potential of traditional biomarkers (such as enzyme activity measurement) and newer redox proteomic approaches. Environmental proteomics, especially a redox proteomics toolbox, may be a novel way to study pollutant effects on organisms which can also yield information on risks to human health. In particular, it can probe subtle biochemical changes at sub-lethal concentrations and thus offer novel insights to toxicity mechanisms. In the first instance, the present research involved a field-study in three stations in Cork Harbour, Ireland (Haulbowline, Ringaskiddy and Douglas) compared to an outharbour control site in Bantry Bay, Ireland. Then, further research was carried out to detect effects of anthropogenic pollution on selected chemicals. Diclofenac is an example of veterinary and human pharmaceuticals, an emerging category of chemical pollutants, with potential to cause serious toxicity to non-target organisms. A second chemical used for this study was copper which is a key source of contamination in marine ecosystems. Thirdly, bisphenol A is a major anthropogenic chemical mainly used in polycarbonate plastics manufacturing that is widespread in the environment. It is also suspected to be an endocrine disruptor. Effects on the gill, the principal feeding organ of mussels, were investigated in particular. Effects on digestive gland were also investigated to compare different outcomes from each tissue. Across the three anthropogenic chemicals studied (diclofenac, copper and bisphenol A), only diclofenac exposure did not show any significant difference towards glutathione transferase (GST) responses. Meanwhile, copper and bisphenol A significantly increased GST in gill. Glutathione reductase (GR) enzyme analysis revealed that all three chemicals have significant responses in gill. Catalase activity showed significant differences in digestive gland exposed to diclofenac and gills exposed to bisphenol A. This study focused then on application of redox proteomics; the study of the oxidative modification of proteins, to M. edulis. Thiol proteins were labelled with 5-iodoacetamidofluorescein prior to one-dimensional and two-dimensional electrophoresis. This clearly revealed some similarities on a portion of the redox proteome across chemical exposures indicating where toxicity mechanism may be common and where effects are unique to a single treatment. This thesis documents that proteomics is a robust tool to provide valuable insights into possible mechanisms of toxicity of anthropogenic contaminants in M. edulis. It is concluded that future research should focus on gill tissue, on protein thiols and on key individual proteins discovered in this study such as calreticulin and arginine kinase which have not previously been considered as biomarkers in aquatic toxicology prior to this study.