2 resultados para along-shelf

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication is important for social and other behavioural interactions in most marine mammal species. The bottlenose dolphin (Tursiops truncatus, Montagu, 1821) is a highly social species that use whistles as communication calls to express identity and to initiate and maintain contact between socially interactive individuals. In this thesis, the degree of variability in whistle behaviour and whistle characteristics was examined between different habitats on a range of spatial scales. The whistle characteristics that best discriminated between different communities were investigated, along with exploration of whistle variation in relation to habitat type, levels of social interaction and relatedness. Finally, the use and variability of individually distinctive calls (signature whistles) within and between Irish and US waters were also examined. Relatively high levels of whistle variation were found within a genetically and socially isolated population of dolphins in the Shannon Estuary, reflecting the need for individual identification and distinctive whistles in a population with long term site fidelity and high levels of social cohesion. Variation between reproductively separate communities in Irish waters was relatively small except between animals in inshore compared with continental shelf waters. The greatest differences in whistle structure overall were evident between dolphins using inshore and offshore US waters, likely reflecting social isolation of the two distinct ecotypes that occur in these waters but also variation in behaviour or habitat conditions. Variation found among inshore communities in US waters reflected similarities in habitat use and levels of social interaction. These findings suggest that vocal variation is socially mediated, behaviourally maintained and dependent on levels of social contact between individuals. The findings contribute to our understanding of the interaction of factors influencing vocalisation behaviour in this behaviourally complex and ecologically plastic species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal objective of this thesis was to investigate the ability of reversible optical O2 sensors to be incorporated into food/beverage packaging systems to continuously monitor O2 levels in a non-destructive manner immediately postpackaging and over time. Residual levels of O2 present in packs can negatively affect product quality and subsequently, product shelf-life, especially for O2-sensitive foods/beverages. Therefore, the ability of O2 sensors to continuously monitor O2 levels present within food/beverage packages was considered commercially relevant in terms of identifying the consequences of residual O2 on product safety and quality over time. Research commenced with the development of a novel range of O2 sensors based on phosphorescent platinum and palladium octaethylporphyrin-ketones (OEPk) in nano-porous high density polyethylene (HDPE), polypropylene (PP) polytetrafluoroethylene (PTFE) polymer supports. Sensors were calibrated over a temperature range of -10°C to +40°C and deemed suitable for food and beverage packaging applications. This sensor technology was used and demonstrated itself effective in determining failures in packaging containment. This was clearly demonstrated in the packaging of cheese string products. The sensor technology was also assessed across a wide range of packaged products; beer, ready-to-eat salad products, bread and convenience-style, muscle-based processed food products. The O2 sensor technology performed extremely well within all packaging systems. The sensor technology adequately detected O2 levels in; beer bottles prior to and following pasteurisation, modified atmosphere (MA) packs of ready-to-eat salad packs as respiration progressed during product storage and MA packs of bread and convenience-style muscle-based products as mycological growth occurred in food packs over time in the presence and absence of ethanol emitters. The use of the technology, in conjunction with standard food quality assessment techniques, showed remarkable usefulness in determining the impact of actual levels of O2 on specific quality attributes. The O2 sensing probe was modified, miniaturised and automated to screen for the determination of total aerobic viable counts (TVC) in several fish species samples. The test showed good correlation with conventional TVC test (ISO:4833:2003), analytical performance and ruggedness with respect to variation of key assay parameters (probe concentration and pipetting volume). Overall, the respirometric fish TVC test was simple to use, possessed a dynamic microbial range (104-107 cfu/g sample), had an accuracy of +/- one log(cfu/g sample) and was rapid. Its ability to assess highly perishable products such as fish for total microbial growth in <12 hr demonstrates commercial potential.