3 resultados para Wireless sensor and actuator network. LWiSSy. Domain specific language. modularization
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This article reflects a collaboration between the Universities of Groningen and Reading of which Frans Zwarts was the promoter. One of the outcomes was a close attention to the learning of various aspects of argument structure by children with specific language impairment (SLI) in Dutch and English. At that time and since, the focus on deficits in grammatical morphology in these children has left verb complementation as something of a syntactic Cinderella. Here we review the findings from our studies in the 1990s. We confirm that children with SLI in both languages have problems with verb specificity, with argument structure alternations and with resultative verb predicates. The very limited number of subsequent studies on verb syntax appear to support our findings. We conclude that this is an area which will repay further scrutiny – it is high time argument structure received an invitation to the ball.
Resumo:
Background: It is well documented that children with Specific Language Impairment (SLI) experience significant grammatical deficits. While much of the focus in the past has been on their morphosyntactic difficulties, less is known about their acquisition of complex syntactic structures such as relative clauses. The role of memory in language performance has also become increasingly prominent in the literature. Aims: This study aims to investigate the control of an important complex syntactic structure, the relative clause, by school age children with SLI in Ireland, using a newly devised sentence recall task. It also aims to explore the role of verbal and short-termworking memory in the performance of children with SLI on the sentence recall task, using a standardized battery of tests based on Baddeley’s model of working memory. Methods and Procedures: Thirty two children with SLI, thirty two age matched typically developing children (AM-TD) between the ages of 6 and 7,11 years and twenty younger typically developing (YTD) children between 4,7 and 5 years, completed the task. The sentence recall (SR) task included 52 complex sentences and 17 fillers. It included relative clauses that are used in natural discourse and that reflect a developmental hierarchy. The relative clauses were also controlled for length and varied in syntactic complexity, representing the full range of syntactic roles. There were seven different relative clause types attached to either the predicate nominal of a copular clause (Pn), or to the direct object of a transitive clause (Do). Responses were recorded, transcribed and entered into a database for analysis. TheWorkingMemory Test Battery for children (WMTB-C—Pickering & Gathercole, 2001) was administered in order to explore the role of short-term memory and working memory on the children’s performance on the SR task. Outcomes and Results: The children with SLI showed significantly greater difficulty than the AM-TD group and the YTD group. With the exception of the genitive subject clauses, the children with SLI scored significantly higher on all sentences containing a Pn main clause than those containing a transitive main clause. Analysis of error types revealed the frequent production of a different type of relative clause than that presented in the task—with a strong word order preference in the NVN direction indicated for the children with SLI. The SR performance for the children with SLI was most highly correlated with expressive language skills and digit recall. Conclusions and Implications: Children with SLI have significantly greater difficulty with relative clauses than YTD children who are on average two years younger—relative clauses are a delay within a delay. Unlike the YTD children they show a tendency to simplify relative clauses in the noun verb noun (NVN) direction. They show a developmental hierarchy in their production of relative clause constructions and are highly influenced by the frequency distribution of the relative clauses in the ambient language.
Resumo:
Wireless Sensor Networks (WSNs) are currently having a revolutionary impact in rapidly emerging wearable applications such as health and fitness monitoring amongst many others. These types of Body Sensor Network (BSN) applications require highly integrated wireless sensor devices for use in a wearable configuration, to monitor various physiological parameters of the user. These new requirements are currently posing significant design challenges from an antenna perspective. This work addresses several design challenges relating to antenna design for these types of applications. In this thesis, a review of current antenna solutions for WSN applications is first presented, investigating both commercial and academic solutions. Key design challenges are then identified relating to antenna size and performance. A detailed investigation of the effects of the human body on antenna impedance characteristics is then presented. A first-generation antenna tuning system is then developed. This system enables the antenna impedance to be tuned adaptively in the presence of the human body. Three new antenna designs are also presented. A compact, low-cost 433 MHz antenna design is first reported and the effects of the human body on the impedance of the antenna are investigated. A tunable version of this antenna is then developed, using a higher performance, second-generation tuner that is integrated within the antenna element itself, enabling autonomous tuning in the presence of the human body. Finally, a compact sized, dual-band antenna is reported that covers both the 433 MHz and 2.45 GHz bands to provide improved quality of service (QoS) in WSN applications. To date, state-of-the-art WSN devices are relatively simple in design with limited antenna options available, especially for the lower UHF bands. In addition, current devices have no capability to deal with changing antenna environments such as in wearable BSN applications. This thesis presents several contributions that advance the state-of-the-art in this area, relating to the design of miniaturized WSN antennas and the development of antenna tuning solutions for BSN applications.