9 resultados para Wind energy, Ireland

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this work is to determine the true cost incurred by the Republic of Ireland and Northern Ireland in order to meet their EU renewable electricity targets. The primary all-island of Ireland policy goal is that 40% of electricity will come from renewable sources in 2020. From this it is expected that wind generation on the Irish electricity system will be in the region of 32-37% of total generation. This leads to issues resulting from wind energy being a non-synchronous, unpredictable and variable source of energy use on a scale never seen before for a single synchronous system. If changes are not made to traditional operational practices, the efficient running of the electricity system will be directly affected by these issues in the coming years. Using models of the electricity system for the all-island grid of Ireland, the effects of high wind energy penetration expected to be present in 2020 are examined. These models were developed using a unit commitment, economic dispatch tool called PLEXOS which allows for a detailed representation of the electricity system to be achieved down to individual generator level. These models replicate the true running of the electricity system through use of day-ahead scheduling and semi-relaxed use of these schedules that reflects the Transmission System Operator's of real time decision making on dispatch. In addition, it carefully considers other non-wind priority dispatch generation technologies that have an effect on the overall system. In the models developed, three main issues associated with wind energy integration were selected to be examined in detail to determine the sensitivity of assumptions presented in other studies. These three issues include wind energy's non-synchronous nature, its variability and spatial correlation, and its unpredictability. This leads to an examination of the effects in three areas: the need for system operation constraints required for system security; different onshore to offshore ratios of installed wind energy; and the degrees of accuracy in wind energy forecasting. Each of these areas directly impact the way in which the electricity system is run as they address each of the three issues associated with wind energy stated above, respectively. It is shown that assumptions in these three areas have a large effect on the results in terms of total generation costs, wind curtailment and generator technology type dispatch. In particular accounting for these issues has resulted in wind curtailment being predicted in much larger quantities than had been previously reported. This would have a large effect on wind energy companies because it is already a very low profit margin industry. Results from this work have shown that the relaxation of system operation constraints is crucial to the economic running of the electricity system with large improvements shown in the reduction of wind curtailment and system generation costs. There are clear benefits in having a proportion of the wind installed offshore in Ireland which would help to reduce variability of wind energy generation on the system and therefore reduce wind curtailment. With envisaged future improvements in day-ahead wind forecasting from 8% to 4% mean absolute error, there are potential reductions in wind curtailment system costs and open cycle gas turbine usage. This work illustrates the consequences of assumptions in the areas of system operation constraints, onshore/offshore installed wind capacities and accuracy in wind forecasting to better inform the true costs associated with running Ireland's changing electricity system as it continues to decarbonise into the near future. This work also proposes to illustrate, through the use of Ireland as a case study, the effects that will become ever more prevalent in other synchronous systems as they pursue a path of increasing renewable energy generation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wind energy installations are increasing in power systems worldwide and wind generation capacity tends to be located some distance from load centers. A conflict may arise at times of high wind generation when it becomes necessary to curtail wind energy in order to maintain conventional generators on-line for the provision of voltage control support at load centers. Using the island of Ireland as a case study and presenting commercially available reactive power support devices as possible solutions to the voltage control problems in urban areas, this paper explores the reduction in total generation costs resulting from the relaxation of the operational constraints requiring conventional generators to be kept on-line near load centers for reactive power support. The paper shows that by 2020 there will be possible savings of 87€m per annum and a reduction in wind curtailment of more than a percentage point if measures are taken to relax these constraints.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For water depths greater than 60m floating wind turbines will become the most economical option for generating offshore wind energy. Tension mooring stabilised units are one type of platform being considered by the offshore wind energy industry. The complex mooring arrangement used by this type of platform means that the dynamics are greatly effected by offsets in the positioning of the anchors. This paper examines the issue of tendon anchor position tolerances. The dynamic effects of three positional tolerances are analysed in survival state using the time domain FASTLink. The severe impact of worst case anchor positional offsets on platform and turbine survivability is shown. The worst anchor misposition combinations are highlighted and should be strongly avoided. Novel methods to mitigate this issue are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An 8 MW wind turbine is described in terms of mass distribution, dimensions, power curve, thrust curve, maximum design load and tower configuration. This turbine has been described as part of the EU FP7 project LEANWIND in order to facilitate research into logistics and naval architecture efficiencies for future offshore wind installations. The design of this 8 MW reference wind turbine has been checked and validated by the design consultancy DNV-GL. This turbine description is intended to bridge the gap between the NREL 5 MW and DTU 10 MW reference turbines and thus contribute to the standardisation of research and development activities in the offshore wind energy industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines 'availability' and the input metrics of operational expenditure (OPEX) for wave energy projects and reports on a case study which assesses the impact of these inputs on project profit returns. Case study simulations modelled a 75 MW wave energy project at two locations; the west coast of Ireland and the north coast of Portugal. Access and availability with respect to weather windows at both locations are discussed and their impact on energy output and wave farm operations is quantified. The input metrics used to calculate OPEX of wave energy projects are defined as well as the impact of OPEX on project net present value (NPV) and internal rate of return (IRR). Results indicate that access and resultant availability factors have a significant impact on case study results by reducing energy output and correspondingly financial returns. Furthermore, the technology maturity level designated for a project also impacts on availability factors and consequently energy output and NPV. Case study profits proved to be very sensitive to annual OPEX, especially if overhaul and replacement costs were accounted for. As a result of the impact of 'availability' on project profit returns. Feed-in tariffs will need to be tailored to the location in question as well as the device technology maturity level, with case study simulations indicating that high FIT will be required to support early stage WEC projects. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the development of wave energy converters, the mooring system is a key component for a safe station-keeping and an important factor in the cost of the wave energy production. Generally, when designing a mooring system for a wave energy converter, two important conditions must be considered: (i) that the mooring system must be strong enough to limit the drifting motions, even in extreme waves, tidal and wind conditions and (ii) it must be compliant enough so that the impact on wave energy production can be minimised. It is frequently found that these two conditions are contradictory. The existing solutions mainly include the use of heavy chains, which create a catenary shaped mooring configuration, allowing limited flexibility within the mooring system, and hence very large forces may still be present on mooring lines and thus on anchors. This solution is normally quite expensive if the costs of the materials and installation are included. This paper presents a new solution to the mooring system for wave energy converters within the FP7 project, ‘GeoWAVE’, which is a project aiming to develop a new generation of the moorings system for minimising the loads on mooring lines and anchors, the impact on the device motions for power conversion, and the footprint if it is applicable, and meanwhile the new types of anchors are also addressed within the project. However this paper will focus on the new mooring system by presenting the wave tank test results of the Pelamis wave energy converter model and the new developed mooring system. It can be seen that the new generation of mooring system can significantly reduce the loads on mooring lines and anchors, and reduce the device excursions as a result of the new mooring system when compare to the conventional catenary mooring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wave energy converters are currently proposed to be deployed near coastal area for the closeness to the infrastructure and for ease of maintenance in order to reduce operational costs. The motivation behind this work is the fact that the deployment depths during the highest and lowest tides will have a significant effect on the mooring system of WECs. In this paper, the issue will be investigated by numerical modelling (using ANSYS AQWA) for both catenary and taut moorings to examine the performance of the mooring system in varying tides. The case study being considered is the ¼- scale wave energy test site in Galway Bay off the west coast of Ireland where some marine renewable energy devices can be tested. In this test site, the tidal range is macro-tidal with a range of approximately 6 m which is a large value relative to the water depth. In the numerical analysis, ANSYS AQWA suite has been used to simulate moored devices under wave excitation at varying tidal ranges. Results show that the highest tide will give rise to larger forces. While at lower depths, slackening of the mooring occurs. Therefore, the mooring lines must be designed to accommodate both situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power systems require a reliable supply and good power quality. The impact of power supply interruptions is well acknowledged and well quantified. However, a system may perform reliably without any interruptions but may have poor power quality. Although poor power quality has cost implications for all actors in the electrical power systems, only some users are aware of its impact. Power system operators are much attuned to the impact of low power quality on their equipment and have the appropriate monitoring systems in place. However, over recent years certain industries have come increasingly vulnerable to negative cost implications of poor power quality arising from changes in their load characteristics and load sensitivities, and therefore increasingly implement power quality monitoring and mitigation solutions. This paper reviews several historical studies which investigate the cost implications of poor power quality on industry. These surveys are largely focused on outages, whilst the impact of poor power quality such as harmonics, short interruptions, voltage dips and swells, and transients is less well studied and understood. This paper examines the difficulties in quantifying the costs of poor power quality, and uses the chi-squared method to determine the consequences for industry of power quality phenomenon using a case study of over 40 manufacturing and data centres in Ireland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates three decision problems with potential to optimize operation and maintenance and logistics strategies for offshore wind farms: the timing of pre-determined jack-up vessel campaigns; selection of crew transfer vessel fleet; and timing of annual services. These problems are compared both in terms of potential cost reduction and the stochastic variability and associated uncertainty of the outcome. Pre-determined jack-up vessel campaigns appear to have a high cost reduction potential but also a higher stochastic variability than the other decision problems. The paper also demonstrates the benefits and difficulties of considering problems together rather than solving them in isolation.