2 resultados para Wild bee
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
HFE is a transmembrane protein that becomes N-glycosylated during transport to the cell membrane. It acts to regulate cellular iron uptake by interacting with the Type 1 transferrin receptor and interfering with its ability to bind iron-loaded transferrin. There is also evidence that HFE regulates systemic iron levels by binding to the Type II transferrin receptor although the mechanism by which this occurs is still not well understood. Mutations to HFE that disrupt this function, or physiological conditions that decrease HFE protein levels, are associated with increased iron uptake, and its accumulation in tissues and organs. This is exemplified by the point mutation that results in conversion of cysteine residue 282 to tyrosine (C282Y), and gives rise to the majority of HFE-related hemochromatoses. The C282Y mutation prevents the formation of a disulfide bridge and disrupts the interaction with its co-chaperone β2-microglobulin. The resulting misfolded protein is retained within the endoplasmic reticulum (ER) where it activates the Unfolded Protein Response (UPR) and is subjected to proteasomal degradation. The absence of functional HFE at the cell surface leads to unregulated iron uptake and iron loading. While the E3 ubiquitin ligase involved in the degradation of HFE-C282Y has been identified, the mechanism by which it is targeted for degradation remains relatively obscure. The primary objective of this project was to further our understanding of how the iron regulatory HFE protein is targeted for degradation. Our studies suggest that the glycosylation status, and the active process of deglycosylation, are central to this process. We identified a number of additional factors that can contribute towards degradation and explored their regulation during ER stress conditions.
Resumo:
Despite a multitude of environmental stressors, the Varroa mite is still regarded as the greatest cause of honey bee mortality in its invaded range. Breeding honey bees that are resistant to the mite is an important area of research. This thesis aimed to gain a better understanding of the grooming and hygienic behaviours of Russian honey bees (RHB). The effect of a break in the synchrony of a mite’s life cycle on reproductive success was tested through brood inoculation experiments. Mites released by hygienic behaviour and forced to enter a new cell are less likely to lay male offspring. Through laboratory cage assays it was found that daughter mites are more susceptible to grooming behaviour. A new method of marking Varroa mites was developed which would enable a single cohort of mites to be followed after inoculation. A strong brood removal trait was noticed in RHB colonies, therefore they were tested for Varroa sensitive hygienic (VSH) behaviour. RHB demonstrated levels of VSH as high as the USDA line bred specifically for this behaviour. In addition the same QTL found to be responsible for the trait in VSH bees, was associated with VSH in RHB stock. Previous work showed that the ratio of older mites to total trapped mites (O/T) in the debris of honey bee colonies demonstrated the strongest association with colony infestation. This research showed that O/T is associated with VSH and brood removal behaviour. In addition, bees that displayed high levels of VSH in this study were also more likely to spend a longer amount of time grooming in laboratory assays. This indicates that both grooming and hygienic behaviours play important roles in the resistance of RHB stock. Their likelihood to be expressed by other stocks is discussed and recommendations for further research are provided.