2 resultados para Wild Rabbits

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concentrated on the historical aspects of the elitist field sports of deer stalking and game shooting, as practiced by four Irish landed ascendancy families in the south west of Ireland. Four great estates were selected for study. Two of these were, by Irish standards, very large: the Kenmare estate of over 136,000 acres in the ownership of the Roman Catholic Earls of Kenmare, and the Herbert estate of over 44,000 acres in the ownership of the Protestant Herbert family. The other two were, in relative terms, small: the Grehan estate of c.7,500 acres in the ownership of the Roman Catholic Grehan family, and the Godfrey estate of c.5,000 acres, in the ownership of the Protestant Barons Godfrey. This mixture of contrasting estate size, owner's religions, nobleman, minor aristocrat and untitled gentry should, it is argued, yield a diversity of the field sports and lifestyles of their owners, and go some way to assess the contributions, good or bad, they have bequeathed to modern Ireland. Equally, it should help in assessing what importance, if any, applied to hunting. In this context, hunting is here used in its broadest meaning, and includes deer stalking and game shooting, as well as hunting with dogs and hounds on foot and horseback. Where a specific type of hunting is involved, it is so described; for example, fox hunting, stag hunting, hare hunting. Similarly, the term game is sometimes used in sporting literature to encompass all species of quarry killed, and can include deer, ground game (hares and rabbits), waterfowl, and various species of game birds. Where it refers to specific species, these are so described; for example grouse, pheasants, woodcork, wild duck, etc. Since two of these estates - the Kenmare and Herbert - each created a deer forest, unique in mid-19th century Ireland, they form the core study estates; the two smaller estates serve as comparative studies. And, equally unique, as these two larger estates held the only remnant population of native Irish red deer, the survival of that herd itself forms a concomitant core area of analysis. The numerary descriptions applied to these animals in popular literature are critically reassessed against prime source historical evidence, as are the so-called deer forest 'clearances'. The core period, 1840 to 1970, is selected as the seminal period, spanning 130 years, from the creation of the deer forests to when a fundamental change in policy and administration was introduced by the state. Comparison is made with similar estates elsewhere, in Britain and especially in Scotland. Their influence on the Irish methods and style of hunting is historically examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HFE is a transmembrane protein that becomes N-glycosylated during transport to the cell membrane. It acts to regulate cellular iron uptake by interacting with the Type 1 transferrin receptor and interfering with its ability to bind iron-loaded transferrin. There is also evidence that HFE regulates systemic iron levels by binding to the Type II transferrin receptor although the mechanism by which this occurs is still not well understood. Mutations to HFE that disrupt this function, or physiological conditions that decrease HFE protein levels, are associated with increased iron uptake, and its accumulation in tissues and organs. This is exemplified by the point mutation that results in conversion of cysteine residue 282 to tyrosine (C282Y), and gives rise to the majority of HFE-related hemochromatoses. The C282Y mutation prevents the formation of a disulfide bridge and disrupts the interaction with its co-chaperone β2-microglobulin. The resulting misfolded protein is retained within the endoplasmic reticulum (ER) where it activates the Unfolded Protein Response (UPR) and is subjected to proteasomal degradation. The absence of functional HFE at the cell surface leads to unregulated iron uptake and iron loading. While the E3 ubiquitin ligase involved in the degradation of HFE-C282Y has been identified, the mechanism by which it is targeted for degradation remains relatively obscure. The primary objective of this project was to further our understanding of how the iron regulatory HFE protein is targeted for degradation. Our studies suggest that the glycosylation status, and the active process of deglycosylation, are central to this process. We identified a number of additional factors that can contribute towards degradation and explored their regulation during ER stress conditions.