7 resultados para Well width
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis divides into two distinct parts, both of which are underpinned by the tight-binding model. The first part covers our implementation of the tight-binding model in conjunction with the Berry phase theory of electronic polarisation to probe the atomistic origins of spontaneous polarisation and piezoelectricity as well as attempting to accurately calculate the values and coefficients associated with these phenomena. We first develop an analytic model for the polarisation of a one-dimensional linear chain of atoms. We compare the zincblende and ideal wurtzite structures in terms of effective charges, spontaneous polarisation and piezoelectric coefficients, within a first nearest neighbour tight-binding model. We further compare these to real wurtzite structures and conclude that accurate quantitative results are beyond the scope of this model but qualitative trends can still be described. The second part of this thesis deals with implementing the tight-binding model to investigate the effect of local alloy fluctuations in bulk AlGaN alloys and InGaN quantum wells. We calculate the band gap evolution of Al1_xGaxN across the full composition range and compare it to experiment as well as fitting bowing parameters to the band gap as well as to the conduction band and valence band edges. We also investigate the wavefunction character of the valence band edge to determine the composition at which the optical polarisation switches in Al1_xGaxN alloys. Finally, we examine electron and hole localisation in InGaN quantum wells. We show how the built-in field localises the carriers along the c-axis and how local alloy fluctuations strongly localise the highest hole states in the c-plane, while the electrons remain delocalised in the c-plane. We show how this localisation affects the charge density overlap and also investigate the effect of well width fluctuations on the localisation of the electrons.
Resumo:
The multiquantum barrier (MQB), proposed by Iga et al in 1986, has been shown by several researchers to be an effective structure for improving the operating characteristics of laser diodes. These improvements include a reduction in the laser threshold current and increased characteristic temperatures. The operation of the MQB has been described as providing an increased barrier to electron overflow by reflecting high energy electrons trying to escape from the active region of the laser.This is achieved in a manner analogous to a Bragg reflector in optics. This thesis presents an investigation of the effectiveness of the MQB as an electron reflector. Numerical models have been developed for calculating the electron reflection due to MQB. Novel optical and electrical characterisation techniques have been used to try to measure an increase in barrier height due to the MQB in AlGaInP.It has been shown that the inclusion of MQB structures in bulk double heterostructure visible laser diodes can halve the threshold current above room temperature and the characteristic temperature of these lasers can be increased by up to 20K.These improvements are shown to occur in visible laser diodes even with the inclusion of theoretically ineffective MQB structures, hence the observed improvement in the characteristics of the laser diodes described above cannot be uniquely attributed to an increased barrier height due to enhance electron reflection. It is proposed here that the MQB improves the performance of laser diodes by proventing the diffusion of zinc into the active region of the laser. It is also proposed that the trapped zinc in the MQB region of the laser diode locally increases the p-type doping bringing the quasi-Fermi level for holes closer to the valence band edge thus increasing the barrier to electron overflow in the conduction band.
Resumo:
Both the emission properties and the evolution of the radio jets of Active Galactic Nuclei are dependent on the magnetic (B) fields that thread them. A number of observations of AGN jets suggest that the B fields they carry have a significant helical component, at least on parsec scales. This thesis uses a model, first proposed by Laing and then developed by Papageorgiou, to explore how well the observed properties of AGN jets can be reproduced by assuming a helical B field with three parameters; pitch angle, viewing angle and degree of entanglement. This model has been applied to multifrequency Very Long Baseline Interferometry (VLBI) observations of the AGN jets of Markarian 501 and M87, making it possible to derive values for the helical pitch angle, the viewing angle and the degree of entanglement for these jets. Faraday rotation measurements are another important tool for investigating the B fields of AGN jets. A helical B field component should result in a systematic gradient in the observed Faraday rotation across the jet. Real observed radio images have finite resolution; typical beam sizes for cm-wavelength VLBI observations are often comparable to or larger than the intrinsic jet widths, raising questions about how well resolved a jet must be in the transverse direction in order to reliably detect transverse Faraday-rotation structure. This thesis presents results of Monte Carlo simulations of Faraday rotation images designed to directly investigate this question, together with a detailed investigation into the probabilities of observing spurious Faraday Rotation gradients as a result of random noise and finite resolution. These simulations clearly demonstrate the possibility of detecting transverse Faraday-rotation structures even when the intrinsic jet widths are appreciably smaller than the beam width.
Resumo:
Nanostructured materials are central to the evolution of future electronics and biomedical applications amongst other applications. This thesis is focused on developing novel methods to prepare a number of nanostructured metal oxide particles and films by a number of different routes. Part of the aim was to see how techniques used in nanoparticle science could be applied to thin film methods to develop functional surfaces. Wet-chemical methods were employed to synthesize and modify the metal oxide nanostructures (CeO2 and SiO2) and their structural properties were characterized through advanced X-ray diffraction, electron microscopy, photoelectron spectroscopy and other techniques. Whilst particulates have uses in many applications, their attachment to surfaces is of importance and this is frequently challenging. We examined the use of block copolymer methods to form very well defined metal oxide particulate-like structures on the surface of a number of substrates. Chapter 2 describes a robust method to synthesize various sized silica nanoparticles. As-synthesized silica nanoparticles were further functionalized with IR-820 and FITC dyes. The ability to create size controlled nanoparticles with associated (optical) functionality may have significant importance in bio-medical imaging. Thesis further describes how non-organic modified fluorescent particles might be prepared using inorganic oxides. A study of the concentrations and distributions of europium dopants within the CeO2 nanoparticles was undertaken and investigated by different microscopic and spectroscopic techniques. The luminescent properties were enhanced by doping and detailed explanations are reported. Additionally, the morphological and structural evolution and optical properties were correlated as a function of concentrations of europium doping as well as with further annealing. Further work using positron annihilation spectroscopy allowed the study of vacancy type defects formed due to europium doping in CeO2 crystallites and this was supported by complimentary UV-Vis spectra and XRD work. During the last few years the interest in mesoporous silica materials has increased due to their typical characteristics such as potential ultra-low dielectric constant materials, large surface area and pore volume, well-ordered and uniform pores with adjustable pores between 2 and 50 nm. A simple, generic and cost-effective route was used to demonstrate the synthesis of 2D mesoporous silica thin films over wafer scale dimensions in chapter 5. Lithographic resist and in situ hard mask block copolymer followed by ICP dry etching were used to fabricate mesoporous silica nanostructures. The width of mesoporous silica channels can be varied by using a variety of commercially available lithographic resists whereas depth of the mesoporous silica channels can be varied by altering the etch time. The crystal structure, morphology, pore arrangement, pore diameters, thickness of films and channels were determined by XRD, SEM, ellipsometry and the results reported. This project also extended work towards the study of the antimicrobial study of nanopatterned silver nanodot arrays formed using the block copolymer approach defined above. Silver nanodot arrays were successfully tested for antimicrobial activity over S. aureus and P. aeruginosa biofilms and results shows silver nanodots has good antimicrobial activity for both S. aureus and P. aeruginosa biofilms. Thus, these silver nanodot arrays shows a potential to be used as a substitute for the resolution of infection complications in many areas.
Resumo:
The present research examines the issue of universal interventions designed to enhance wellbeing among a community-based adolescent population. The first phase saw a cross-sectional survey conducted among Transition Year students in 13 secondary schools in Cork city and county, Republic of Ireland, with a view towards identifying dimensions linked with wellbeing (operationalised as subjective happiness, life satisfaction, and depressive symptoms) and which might prove effective in informing intervention approaches. Arising from this, mindfulness, gratitude, and cognitive-behavioural dimensions emerged as predictors of wellbeing, and short interventions (four sessions/four weeks) informed by each were conducted with participant groups in three secondary schools, one intervention in each school. Results from statistical analysis showed that the mindfulness and cognitive-behavioural interventions facilitated significant reductions in depressive symptoms among active condition participants at post-test, but that these benefits were not sustained over time, while no statistically significant changes were detected on subjective happiness and life satisfaction. The gratitude intervention was found to have had no effect on the three outcome variables. The findings are discussed in the context of theory and past research, while limitations, implications, and possible future directions are also addressed.
Resumo:
This thesis explores the psychosocial wellbeing of sub-Saharan African migrant children in Ireland. A sociocultural ecological (Psychosocial Working Group, 2003) and resilience lens (Masten & Obradovic, 2008; Ungar, 2011) is used to analyse the experiences of African migrant children in Ireland. The research strategy employs a mixed-methods design, combining both an etic and emic perspective. Grounded theory inquiry (Strauss and Corbin, 1994) explores the experiences of African migrant children in Ireland by drawing on multi-sited observations over a period of six months in 2009, and on interviews and focus group discussions conducted with African children (aged 13-18), mothers and fathers. An emically derived ‘African Migrant Child Psychosocial Well-being’ scale was developed by drawing on data gathered through rapid ethnographic (RAE) free listing exercises carried out in Cork, Dublin and Dundalk with sixty-one participants (N=21 adults, N=28 15-18-year-olds, N=12 12-14-year-olds) and three African community key informants to elicit local understandings of psychosocial well-being. This newly developed scale was used alongside standardised measures of well-being to quantitatively measure the psychosocial adjustment of 233 African migrant children in Cork, Dublin and Dundalk aged 11-18. Findings indicate that the psychosocial wellbeing of the study population is satisfactory when benchmarked against the psychosocial health profile of Irish youth (Dooley & Fitzgerald, 2012). These findings are similar to trends reported in international literature in this field (Georgiades et al., 2006; Gonneke, Stevens, Vollebergh, 2008; Sampson et al., 2005). Study findings have implications for advancing psychosocial research methods with non-Western populations and on informing the practice of Irish professionals, mainly in the areas of teaching, psychology and community work.
Resumo:
Prenatal well-being can have significant effects on the mother and developing foetus. Positive psychological interventions, including gratitude and mindfulness, consistently demonstrate benefits for well-being in diverse populations. No research has been conducted on gratitude during pregnancy; the few studies of prenatal mindfulness interventions have demonstrated well-being benefits. The current study examined the effects of gratitude and mindfulness interventions on prenatal maternal well-being, cortisol and birth outcomes. Five studies were conducted. Study 1 was a systematic review of mindfulness intervention effects on cortisol; this highlighted potential benefits of mindfulness but the need for rigorous protocols in future research. In Study 2 a gratitude and a mindfulness intervention were developed and evaluated; findings indicate usefulness of two 3 week interventions. Study 3 examined the effects of these interventions in a randomised controlled trial (RCT) of non-pregnant women, before examining a pregnant group. No significant intervention effects were found in this study, potentially due to insufficient power and poor protocol adherence. Changes in expected directions were observed for most outcomes and the potential utility of a combined gratitude and mindfulness intervention was noted. In Study 4 a gratitude during pregnancy (GDP) scale was developed and the reliability of an existing mindfulness measure (MAAS) was examined in a pregnant group. Both scales were found to be suitable and reliable measures in pregnancy. Study 5 incorporated the findings of the previous four studies to examine of the effect of a combined mindfulness and gratitude intervention with a group of pregnant women. Forty-six participants took part in a 5-week RCT that examined intervention effects on prenatal gratitude, mindfulness, happiness, satisfaction with life, social support, prenatal stress, depression and sleep. Findings indicated that the intervention improved sleep quality and that effects for prenatal distress were approaching significance. Issues of attrition and non-compliance to study protocols were problematic and are discussed. In summary, the current thesis highlights the need for robust measurement, and intervention and cortisol sampling protocols in future research, particularly with pregnant groups. Findings also demonstrate tentative benefits of a gratitude and mindfulness intervention during pregnancy.